This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvds2add | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ M e. ZZ ) ) |
|
| 2 | 3simpb | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ N e. ZZ ) ) |
|
| 3 | zaddcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + N ) e. ZZ ) |
|
| 4 | 3 | anim2i | |- ( ( K e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( K e. ZZ /\ ( M + N ) e. ZZ ) ) |
| 5 | 4 | 3impb | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K e. ZZ /\ ( M + N ) e. ZZ ) ) |
| 6 | zaddcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
|
| 7 | 6 | adantl | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x + y ) e. ZZ ) |
| 8 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 9 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 10 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 11 | adddir | |- ( ( x e. CC /\ y e. CC /\ K e. CC ) -> ( ( x + y ) x. K ) = ( ( x x. K ) + ( y x. K ) ) ) |
|
| 12 | 8 9 10 11 | syl3an | |- ( ( x e. ZZ /\ y e. ZZ /\ K e. ZZ ) -> ( ( x + y ) x. K ) = ( ( x x. K ) + ( y x. K ) ) ) |
| 13 | 12 | 3comr | |- ( ( K e. ZZ /\ x e. ZZ /\ y e. ZZ ) -> ( ( x + y ) x. K ) = ( ( x x. K ) + ( y x. K ) ) ) |
| 14 | 13 | 3expb | |- ( ( K e. ZZ /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x + y ) x. K ) = ( ( x x. K ) + ( y x. K ) ) ) |
| 15 | oveq12 | |- ( ( ( x x. K ) = M /\ ( y x. K ) = N ) -> ( ( x x. K ) + ( y x. K ) ) = ( M + N ) ) |
|
| 16 | 14 15 | sylan9eq | |- ( ( ( K e. ZZ /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( ( x x. K ) = M /\ ( y x. K ) = N ) ) -> ( ( x + y ) x. K ) = ( M + N ) ) |
| 17 | 16 | ex | |- ( ( K e. ZZ /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. K ) = M /\ ( y x. K ) = N ) -> ( ( x + y ) x. K ) = ( M + N ) ) ) |
| 18 | 17 | 3ad2antl1 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( x x. K ) = M /\ ( y x. K ) = N ) -> ( ( x + y ) x. K ) = ( M + N ) ) ) |
| 19 | 1 2 5 7 18 | dvds2lem | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M + N ) ) ) |