This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 4sqlem5.3 | |- ( ph -> M e. NN ) |
||
| 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sqlem9.5 | |- ( ( ph /\ ps ) -> ( B ^ 2 ) = 0 ) |
||
| Assertion | 4sqlem9 | |- ( ( ph /\ ps ) -> ( M ^ 2 ) || ( A ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 2 | 4sqlem5.3 | |- ( ph -> M e. NN ) |
|
| 3 | 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 4 | 4sqlem9.5 | |- ( ( ph /\ ps ) -> ( B ^ 2 ) = 0 ) |
|
| 5 | 1 2 3 | 4sqlem5 | |- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |
| 6 | 5 | simpld | |- ( ph -> B e. ZZ ) |
| 7 | 6 | zcnd | |- ( ph -> B e. CC ) |
| 8 | sqeq0 | |- ( B e. CC -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
| 10 | 9 | biimpa | |- ( ( ph /\ ( B ^ 2 ) = 0 ) -> B = 0 ) |
| 11 | 4 10 | syldan | |- ( ( ph /\ ps ) -> B = 0 ) |
| 12 | 11 | oveq2d | |- ( ( ph /\ ps ) -> ( A - B ) = ( A - 0 ) ) |
| 13 | 1 | adantr | |- ( ( ph /\ ps ) -> A e. ZZ ) |
| 14 | 13 | zcnd | |- ( ( ph /\ ps ) -> A e. CC ) |
| 15 | 14 | subid1d | |- ( ( ph /\ ps ) -> ( A - 0 ) = A ) |
| 16 | 12 15 | eqtrd | |- ( ( ph /\ ps ) -> ( A - B ) = A ) |
| 17 | 16 | oveq1d | |- ( ( ph /\ ps ) -> ( ( A - B ) / M ) = ( A / M ) ) |
| 18 | 5 | simprd | |- ( ph -> ( ( A - B ) / M ) e. ZZ ) |
| 19 | 18 | adantr | |- ( ( ph /\ ps ) -> ( ( A - B ) / M ) e. ZZ ) |
| 20 | 17 19 | eqeltrrd | |- ( ( ph /\ ps ) -> ( A / M ) e. ZZ ) |
| 21 | 2 | nnzd | |- ( ph -> M e. ZZ ) |
| 22 | 2 | nnne0d | |- ( ph -> M =/= 0 ) |
| 23 | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ A e. ZZ ) -> ( M || A <-> ( A / M ) e. ZZ ) ) |
|
| 24 | 21 22 1 23 | syl3anc | |- ( ph -> ( M || A <-> ( A / M ) e. ZZ ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ ps ) -> ( M || A <-> ( A / M ) e. ZZ ) ) |
| 26 | 20 25 | mpbird | |- ( ( ph /\ ps ) -> M || A ) |
| 27 | dvdssq | |- ( ( M e. ZZ /\ A e. ZZ ) -> ( M || A <-> ( M ^ 2 ) || ( A ^ 2 ) ) ) |
|
| 28 | 21 13 27 | syl2an2r | |- ( ( ph /\ ps ) -> ( M || A <-> ( M ^ 2 ) || ( A ^ 2 ) ) ) |
| 29 | 26 28 | mpbid | |- ( ( ph /\ ps ) -> ( M ^ 2 ) || ( A ^ 2 ) ) |