This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 4sqlem5.3 | |- ( ph -> M e. NN ) |
||
| 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| Assertion | 4sqlem7 | |- ( ph -> ( B ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 2 | 4sqlem5.3 | |- ( ph -> M e. NN ) |
|
| 3 | 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 4 | 1 2 3 | 4sqlem5 | |- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |
| 5 | 4 | simpld | |- ( ph -> B e. ZZ ) |
| 6 | 5 | zred | |- ( ph -> B e. RR ) |
| 7 | 2 | nnrpd | |- ( ph -> M e. RR+ ) |
| 8 | 7 | rphalfcld | |- ( ph -> ( M / 2 ) e. RR+ ) |
| 9 | 8 | rpred | |- ( ph -> ( M / 2 ) e. RR ) |
| 10 | 1 2 3 | 4sqlem6 | |- ( ph -> ( -u ( M / 2 ) <_ B /\ B < ( M / 2 ) ) ) |
| 11 | 10 | simprd | |- ( ph -> B < ( M / 2 ) ) |
| 12 | 6 9 11 | ltled | |- ( ph -> B <_ ( M / 2 ) ) |
| 13 | 10 | simpld | |- ( ph -> -u ( M / 2 ) <_ B ) |
| 14 | 9 6 13 | lenegcon1d | |- ( ph -> -u B <_ ( M / 2 ) ) |
| 15 | 8 | rpge0d | |- ( ph -> 0 <_ ( M / 2 ) ) |
| 16 | lenegsq | |- ( ( B e. RR /\ ( M / 2 ) e. RR /\ 0 <_ ( M / 2 ) ) -> ( ( B <_ ( M / 2 ) /\ -u B <_ ( M / 2 ) ) <-> ( B ^ 2 ) <_ ( ( M / 2 ) ^ 2 ) ) ) |
|
| 17 | 6 9 15 16 | syl3anc | |- ( ph -> ( ( B <_ ( M / 2 ) /\ -u B <_ ( M / 2 ) ) <-> ( B ^ 2 ) <_ ( ( M / 2 ) ^ 2 ) ) ) |
| 18 | 12 14 17 | mpbi2and | |- ( ph -> ( B ^ 2 ) <_ ( ( M / 2 ) ^ 2 ) ) |
| 19 | 2cnd | |- ( ph -> 2 e. CC ) |
|
| 20 | 19 | sqvald | |- ( ph -> ( 2 ^ 2 ) = ( 2 x. 2 ) ) |
| 21 | 20 | oveq2d | |- ( ph -> ( ( M ^ 2 ) / ( 2 ^ 2 ) ) = ( ( M ^ 2 ) / ( 2 x. 2 ) ) ) |
| 22 | 2 | nncnd | |- ( ph -> M e. CC ) |
| 23 | 2ne0 | |- 2 =/= 0 |
|
| 24 | 23 | a1i | |- ( ph -> 2 =/= 0 ) |
| 25 | 22 19 24 | sqdivd | |- ( ph -> ( ( M / 2 ) ^ 2 ) = ( ( M ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 26 | 22 | sqcld | |- ( ph -> ( M ^ 2 ) e. CC ) |
| 27 | 26 19 19 24 24 | divdiv1d | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) / 2 ) = ( ( M ^ 2 ) / ( 2 x. 2 ) ) ) |
| 28 | 21 25 27 | 3eqtr4d | |- ( ph -> ( ( M / 2 ) ^ 2 ) = ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 29 | 18 28 | breqtrd | |- ( ph -> ( B ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |