This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 4sqlem5.3 | |- ( ph -> M e. NN ) |
||
| 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sqlem10.5 | |- ( ( ph /\ ps ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( B ^ 2 ) ) = 0 ) |
||
| Assertion | 4sqlem10 | |- ( ( ph /\ ps ) -> ( M ^ 2 ) || ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 2 | 4sqlem5.3 | |- ( ph -> M e. NN ) |
|
| 3 | 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 4 | 4sqlem10.5 | |- ( ( ph /\ ps ) -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( B ^ 2 ) ) = 0 ) |
|
| 5 | 2 | adantr | |- ( ( ph /\ ps ) -> M e. NN ) |
| 6 | 5 | nnzd | |- ( ( ph /\ ps ) -> M e. ZZ ) |
| 7 | zsqcl | |- ( M e. ZZ -> ( M ^ 2 ) e. ZZ ) |
|
| 8 | 6 7 | syl | |- ( ( ph /\ ps ) -> ( M ^ 2 ) e. ZZ ) |
| 9 | 1 | adantr | |- ( ( ph /\ ps ) -> A e. ZZ ) |
| 10 | 5 | nnred | |- ( ( ph /\ ps ) -> M e. RR ) |
| 11 | 10 | rehalfcld | |- ( ( ph /\ ps ) -> ( M / 2 ) e. RR ) |
| 12 | 11 | recnd | |- ( ( ph /\ ps ) -> ( M / 2 ) e. CC ) |
| 13 | 12 | negnegd | |- ( ( ph /\ ps ) -> -u -u ( M / 2 ) = ( M / 2 ) ) |
| 14 | 1 2 3 | 4sqlem5 | |- ( ph -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ ps ) -> ( B e. ZZ /\ ( ( A - B ) / M ) e. ZZ ) ) |
| 16 | 15 | simpld | |- ( ( ph /\ ps ) -> B e. ZZ ) |
| 17 | 16 | zred | |- ( ( ph /\ ps ) -> B e. RR ) |
| 18 | 1 2 3 | 4sqlem6 | |- ( ph -> ( -u ( M / 2 ) <_ B /\ B < ( M / 2 ) ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ ps ) -> ( -u ( M / 2 ) <_ B /\ B < ( M / 2 ) ) ) |
| 20 | 19 | simprd | |- ( ( ph /\ ps ) -> B < ( M / 2 ) ) |
| 21 | 17 20 | ltned | |- ( ( ph /\ ps ) -> B =/= ( M / 2 ) ) |
| 22 | 21 | neneqd | |- ( ( ph /\ ps ) -> -. B = ( M / 2 ) ) |
| 23 | 2cnd | |- ( ( ph /\ ps ) -> 2 e. CC ) |
|
| 24 | 23 | sqvald | |- ( ( ph /\ ps ) -> ( 2 ^ 2 ) = ( 2 x. 2 ) ) |
| 25 | 24 | oveq2d | |- ( ( ph /\ ps ) -> ( ( M ^ 2 ) / ( 2 ^ 2 ) ) = ( ( M ^ 2 ) / ( 2 x. 2 ) ) ) |
| 26 | 5 | nncnd | |- ( ( ph /\ ps ) -> M e. CC ) |
| 27 | 2ne0 | |- 2 =/= 0 |
|
| 28 | 27 | a1i | |- ( ( ph /\ ps ) -> 2 =/= 0 ) |
| 29 | 26 23 28 | sqdivd | |- ( ( ph /\ ps ) -> ( ( M / 2 ) ^ 2 ) = ( ( M ^ 2 ) / ( 2 ^ 2 ) ) ) |
| 30 | 26 | sqcld | |- ( ( ph /\ ps ) -> ( M ^ 2 ) e. CC ) |
| 31 | 30 23 23 28 28 | divdiv1d | |- ( ( ph /\ ps ) -> ( ( ( M ^ 2 ) / 2 ) / 2 ) = ( ( M ^ 2 ) / ( 2 x. 2 ) ) ) |
| 32 | 25 29 31 | 3eqtr4d | |- ( ( ph /\ ps ) -> ( ( M / 2 ) ^ 2 ) = ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 33 | 30 | halfcld | |- ( ( ph /\ ps ) -> ( ( M ^ 2 ) / 2 ) e. CC ) |
| 34 | 33 | halfcld | |- ( ( ph /\ ps ) -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. CC ) |
| 35 | 16 | zcnd | |- ( ( ph /\ ps ) -> B e. CC ) |
| 36 | 35 | sqcld | |- ( ( ph /\ ps ) -> ( B ^ 2 ) e. CC ) |
| 37 | 34 36 4 | subeq0d | |- ( ( ph /\ ps ) -> ( ( ( M ^ 2 ) / 2 ) / 2 ) = ( B ^ 2 ) ) |
| 38 | 32 37 | eqtr2d | |- ( ( ph /\ ps ) -> ( B ^ 2 ) = ( ( M / 2 ) ^ 2 ) ) |
| 39 | sqeqor | |- ( ( B e. CC /\ ( M / 2 ) e. CC ) -> ( ( B ^ 2 ) = ( ( M / 2 ) ^ 2 ) <-> ( B = ( M / 2 ) \/ B = -u ( M / 2 ) ) ) ) |
|
| 40 | 35 12 39 | syl2anc | |- ( ( ph /\ ps ) -> ( ( B ^ 2 ) = ( ( M / 2 ) ^ 2 ) <-> ( B = ( M / 2 ) \/ B = -u ( M / 2 ) ) ) ) |
| 41 | 38 40 | mpbid | |- ( ( ph /\ ps ) -> ( B = ( M / 2 ) \/ B = -u ( M / 2 ) ) ) |
| 42 | 41 | ord | |- ( ( ph /\ ps ) -> ( -. B = ( M / 2 ) -> B = -u ( M / 2 ) ) ) |
| 43 | 22 42 | mpd | |- ( ( ph /\ ps ) -> B = -u ( M / 2 ) ) |
| 44 | 43 16 | eqeltrrd | |- ( ( ph /\ ps ) -> -u ( M / 2 ) e. ZZ ) |
| 45 | 44 | znegcld | |- ( ( ph /\ ps ) -> -u -u ( M / 2 ) e. ZZ ) |
| 46 | 13 45 | eqeltrrd | |- ( ( ph /\ ps ) -> ( M / 2 ) e. ZZ ) |
| 47 | 9 46 | zaddcld | |- ( ( ph /\ ps ) -> ( A + ( M / 2 ) ) e. ZZ ) |
| 48 | zsqcl | |- ( ( A + ( M / 2 ) ) e. ZZ -> ( ( A + ( M / 2 ) ) ^ 2 ) e. ZZ ) |
|
| 49 | 47 48 | syl | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) ^ 2 ) e. ZZ ) |
| 50 | 47 6 | zmulcld | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) x. M ) e. ZZ ) |
| 51 | 47 | zred | |- ( ( ph /\ ps ) -> ( A + ( M / 2 ) ) e. RR ) |
| 52 | 5 | nnrpd | |- ( ( ph /\ ps ) -> M e. RR+ ) |
| 53 | 51 52 | modcld | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) mod M ) e. RR ) |
| 54 | 53 | recnd | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) mod M ) e. CC ) |
| 55 | 0cnd | |- ( ( ph /\ ps ) -> 0 e. CC ) |
|
| 56 | df-neg | |- -u ( M / 2 ) = ( 0 - ( M / 2 ) ) |
|
| 57 | 43 3 56 | 3eqtr3g | |- ( ( ph /\ ps ) -> ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) = ( 0 - ( M / 2 ) ) ) |
| 58 | 54 55 12 57 | subcan2d | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) mod M ) = 0 ) |
| 59 | dvdsval3 | |- ( ( M e. NN /\ ( A + ( M / 2 ) ) e. ZZ ) -> ( M || ( A + ( M / 2 ) ) <-> ( ( A + ( M / 2 ) ) mod M ) = 0 ) ) |
|
| 60 | 5 47 59 | syl2anc | |- ( ( ph /\ ps ) -> ( M || ( A + ( M / 2 ) ) <-> ( ( A + ( M / 2 ) ) mod M ) = 0 ) ) |
| 61 | 58 60 | mpbird | |- ( ( ph /\ ps ) -> M || ( A + ( M / 2 ) ) ) |
| 62 | dvdssq | |- ( ( M e. ZZ /\ ( A + ( M / 2 ) ) e. ZZ ) -> ( M || ( A + ( M / 2 ) ) <-> ( M ^ 2 ) || ( ( A + ( M / 2 ) ) ^ 2 ) ) ) |
|
| 63 | 6 47 62 | syl2anc | |- ( ( ph /\ ps ) -> ( M || ( A + ( M / 2 ) ) <-> ( M ^ 2 ) || ( ( A + ( M / 2 ) ) ^ 2 ) ) ) |
| 64 | 61 63 | mpbid | |- ( ( ph /\ ps ) -> ( M ^ 2 ) || ( ( A + ( M / 2 ) ) ^ 2 ) ) |
| 65 | 26 | sqvald | |- ( ( ph /\ ps ) -> ( M ^ 2 ) = ( M x. M ) ) |
| 66 | 5 | nnne0d | |- ( ( ph /\ ps ) -> M =/= 0 ) |
| 67 | dvdsmulcr | |- ( ( M e. ZZ /\ ( A + ( M / 2 ) ) e. ZZ /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( ( M x. M ) || ( ( A + ( M / 2 ) ) x. M ) <-> M || ( A + ( M / 2 ) ) ) ) |
|
| 68 | 6 47 6 66 67 | syl112anc | |- ( ( ph /\ ps ) -> ( ( M x. M ) || ( ( A + ( M / 2 ) ) x. M ) <-> M || ( A + ( M / 2 ) ) ) ) |
| 69 | 61 68 | mpbird | |- ( ( ph /\ ps ) -> ( M x. M ) || ( ( A + ( M / 2 ) ) x. M ) ) |
| 70 | 65 69 | eqbrtrd | |- ( ( ph /\ ps ) -> ( M ^ 2 ) || ( ( A + ( M / 2 ) ) x. M ) ) |
| 71 | 8 49 50 64 70 | dvds2subd | |- ( ( ph /\ ps ) -> ( M ^ 2 ) || ( ( ( A + ( M / 2 ) ) ^ 2 ) - ( ( A + ( M / 2 ) ) x. M ) ) ) |
| 72 | 47 | zcnd | |- ( ( ph /\ ps ) -> ( A + ( M / 2 ) ) e. CC ) |
| 73 | 72 | sqvald | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) ^ 2 ) = ( ( A + ( M / 2 ) ) x. ( A + ( M / 2 ) ) ) ) |
| 74 | 73 | oveq1d | |- ( ( ph /\ ps ) -> ( ( ( A + ( M / 2 ) ) ^ 2 ) - ( ( A + ( M / 2 ) ) x. M ) ) = ( ( ( A + ( M / 2 ) ) x. ( A + ( M / 2 ) ) ) - ( ( A + ( M / 2 ) ) x. M ) ) ) |
| 75 | 72 72 26 | subdid | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) x. ( ( A + ( M / 2 ) ) - M ) ) = ( ( ( A + ( M / 2 ) ) x. ( A + ( M / 2 ) ) ) - ( ( A + ( M / 2 ) ) x. M ) ) ) |
| 76 | 26 | 2halvesd | |- ( ( ph /\ ps ) -> ( ( M / 2 ) + ( M / 2 ) ) = M ) |
| 77 | 76 | oveq2d | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) - ( ( M / 2 ) + ( M / 2 ) ) ) = ( ( A + ( M / 2 ) ) - M ) ) |
| 78 | 9 | zcnd | |- ( ( ph /\ ps ) -> A e. CC ) |
| 79 | 78 12 12 | pnpcan2d | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) - ( ( M / 2 ) + ( M / 2 ) ) ) = ( A - ( M / 2 ) ) ) |
| 80 | 77 79 | eqtr3d | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) - M ) = ( A - ( M / 2 ) ) ) |
| 81 | 80 | oveq2d | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) x. ( ( A + ( M / 2 ) ) - M ) ) = ( ( A + ( M / 2 ) ) x. ( A - ( M / 2 ) ) ) ) |
| 82 | subsq | |- ( ( A e. CC /\ ( M / 2 ) e. CC ) -> ( ( A ^ 2 ) - ( ( M / 2 ) ^ 2 ) ) = ( ( A + ( M / 2 ) ) x. ( A - ( M / 2 ) ) ) ) |
|
| 83 | 78 12 82 | syl2anc | |- ( ( ph /\ ps ) -> ( ( A ^ 2 ) - ( ( M / 2 ) ^ 2 ) ) = ( ( A + ( M / 2 ) ) x. ( A - ( M / 2 ) ) ) ) |
| 84 | 32 | oveq2d | |- ( ( ph /\ ps ) -> ( ( A ^ 2 ) - ( ( M / 2 ) ^ 2 ) ) = ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 85 | 81 83 84 | 3eqtr2d | |- ( ( ph /\ ps ) -> ( ( A + ( M / 2 ) ) x. ( ( A + ( M / 2 ) ) - M ) ) = ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 86 | 74 75 85 | 3eqtr2d | |- ( ( ph /\ ps ) -> ( ( ( A + ( M / 2 ) ) ^ 2 ) - ( ( A + ( M / 2 ) ) x. M ) ) = ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 87 | 71 86 | breqtrd | |- ( ( ph /\ ps ) -> ( M ^ 2 ) || ( ( A ^ 2 ) - ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |