This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 4sq.2 | |- ( ph -> N e. NN ) |
||
| 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
||
| 4sq.4 | |- ( ph -> P e. Prime ) |
||
| 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
||
| 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
||
| 4sq.7 | |- M = inf ( T , RR , < ) |
||
| 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
||
| 4sq.a | |- ( ph -> A e. ZZ ) |
||
| 4sq.b | |- ( ph -> B e. ZZ ) |
||
| 4sq.c | |- ( ph -> C e. ZZ ) |
||
| 4sq.d | |- ( ph -> D e. ZZ ) |
||
| 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
||
| 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
||
| Assertion | 4sqlem15 | |- ( ( ph /\ R = M ) -> ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) /\ ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | 4sq.2 | |- ( ph -> N e. NN ) |
|
| 3 | 4sq.3 | |- ( ph -> P = ( ( 2 x. N ) + 1 ) ) |
|
| 4 | 4sq.4 | |- ( ph -> P e. Prime ) |
|
| 5 | 4sq.5 | |- ( ph -> ( 0 ... ( 2 x. N ) ) C_ S ) |
|
| 6 | 4sq.6 | |- T = { i e. NN | ( i x. P ) e. S } |
|
| 7 | 4sq.7 | |- M = inf ( T , RR , < ) |
|
| 8 | 4sq.m | |- ( ph -> M e. ( ZZ>= ` 2 ) ) |
|
| 9 | 4sq.a | |- ( ph -> A e. ZZ ) |
|
| 10 | 4sq.b | |- ( ph -> B e. ZZ ) |
|
| 11 | 4sq.c | |- ( ph -> C e. ZZ ) |
|
| 12 | 4sq.d | |- ( ph -> D e. ZZ ) |
|
| 13 | 4sq.e | |- E = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 14 | 4sq.f | |- F = ( ( ( B + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 15 | 4sq.g | |- G = ( ( ( C + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 16 | 4sq.h | |- H = ( ( ( D + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 17 | 4sq.r | |- R = ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) |
|
| 18 | 4sq.p | |- ( ph -> ( M x. P ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) + ( ( C ^ 2 ) + ( D ^ 2 ) ) ) ) |
|
| 19 | eluz2nn | |- ( M e. ( ZZ>= ` 2 ) -> M e. NN ) |
|
| 20 | 8 19 | syl | |- ( ph -> M e. NN ) |
| 21 | 20 | nnred | |- ( ph -> M e. RR ) |
| 22 | 21 | resqcld | |- ( ph -> ( M ^ 2 ) e. RR ) |
| 23 | 22 | rehalfcld | |- ( ph -> ( ( M ^ 2 ) / 2 ) e. RR ) |
| 24 | 23 | rehalfcld | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. RR ) |
| 25 | 24 | recnd | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) / 2 ) e. CC ) |
| 26 | 9 20 13 | 4sqlem5 | |- ( ph -> ( E e. ZZ /\ ( ( A - E ) / M ) e. ZZ ) ) |
| 27 | 26 | simpld | |- ( ph -> E e. ZZ ) |
| 28 | zsqcl | |- ( E e. ZZ -> ( E ^ 2 ) e. ZZ ) |
|
| 29 | 27 28 | syl | |- ( ph -> ( E ^ 2 ) e. ZZ ) |
| 30 | 29 | zred | |- ( ph -> ( E ^ 2 ) e. RR ) |
| 31 | 30 | recnd | |- ( ph -> ( E ^ 2 ) e. CC ) |
| 32 | 10 20 14 | 4sqlem5 | |- ( ph -> ( F e. ZZ /\ ( ( B - F ) / M ) e. ZZ ) ) |
| 33 | 32 | simpld | |- ( ph -> F e. ZZ ) |
| 34 | zsqcl | |- ( F e. ZZ -> ( F ^ 2 ) e. ZZ ) |
|
| 35 | 33 34 | syl | |- ( ph -> ( F ^ 2 ) e. ZZ ) |
| 36 | 35 | zred | |- ( ph -> ( F ^ 2 ) e. RR ) |
| 37 | 36 | recnd | |- ( ph -> ( F ^ 2 ) e. CC ) |
| 38 | 25 25 31 37 | addsub4d | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) ) |
| 39 | 23 | recnd | |- ( ph -> ( ( M ^ 2 ) / 2 ) e. CC ) |
| 40 | 39 | 2halvesd | |- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) = ( ( M ^ 2 ) / 2 ) ) |
| 41 | 40 | oveq1d | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 42 | 38 41 | eqtr3d | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) = ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 43 | 42 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) = ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 44 | 22 | recnd | |- ( ph -> ( M ^ 2 ) e. CC ) |
| 45 | 44 | 2halvesd | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) = ( M ^ 2 ) ) |
| 46 | 45 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) = ( M ^ 2 ) ) |
| 47 | 21 | recnd | |- ( ph -> M e. CC ) |
| 48 | 47 | sqvald | |- ( ph -> ( M ^ 2 ) = ( M x. M ) ) |
| 49 | 48 | adantr | |- ( ( ph /\ R = M ) -> ( M ^ 2 ) = ( M x. M ) ) |
| 50 | simpr | |- ( ( ph /\ R = M ) -> R = M ) |
|
| 51 | 17 50 | eqtr3id | |- ( ( ph /\ R = M ) -> ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) = M ) |
| 52 | 51 | oveq1d | |- ( ( ph /\ R = M ) -> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) x. M ) = ( M x. M ) ) |
| 53 | 30 36 | readdcld | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. RR ) |
| 54 | 11 20 15 | 4sqlem5 | |- ( ph -> ( G e. ZZ /\ ( ( C - G ) / M ) e. ZZ ) ) |
| 55 | 54 | simpld | |- ( ph -> G e. ZZ ) |
| 56 | zsqcl | |- ( G e. ZZ -> ( G ^ 2 ) e. ZZ ) |
|
| 57 | 55 56 | syl | |- ( ph -> ( G ^ 2 ) e. ZZ ) |
| 58 | 57 | zred | |- ( ph -> ( G ^ 2 ) e. RR ) |
| 59 | 12 20 16 | 4sqlem5 | |- ( ph -> ( H e. ZZ /\ ( ( D - H ) / M ) e. ZZ ) ) |
| 60 | 59 | simpld | |- ( ph -> H e. ZZ ) |
| 61 | zsqcl | |- ( H e. ZZ -> ( H ^ 2 ) e. ZZ ) |
|
| 62 | 60 61 | syl | |- ( ph -> ( H ^ 2 ) e. ZZ ) |
| 63 | 62 | zred | |- ( ph -> ( H ^ 2 ) e. RR ) |
| 64 | 58 63 | readdcld | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) e. RR ) |
| 65 | 53 64 | readdcld | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. RR ) |
| 66 | 65 | recnd | |- ( ph -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. CC ) |
| 67 | 20 | nnne0d | |- ( ph -> M =/= 0 ) |
| 68 | 66 47 67 | divcan1d | |- ( ph -> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) x. M ) = ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 69 | 68 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) / M ) x. M ) = ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 70 | 49 52 69 | 3eqtr2rd | |- ( ( ph /\ R = M ) -> ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = ( M ^ 2 ) ) |
| 71 | 46 70 | oveq12d | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = ( ( M ^ 2 ) - ( M ^ 2 ) ) ) |
| 72 | 53 | recnd | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) e. CC ) |
| 73 | 64 | recnd | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) e. CC ) |
| 74 | 39 39 72 73 | addsub4d | |- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) |
| 75 | 74 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) + ( ( M ^ 2 ) / 2 ) ) - ( ( ( E ^ 2 ) + ( F ^ 2 ) ) + ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) |
| 76 | 44 | subidd | |- ( ph -> ( ( M ^ 2 ) - ( M ^ 2 ) ) = 0 ) |
| 77 | 76 | adantr | |- ( ( ph /\ R = M ) -> ( ( M ^ 2 ) - ( M ^ 2 ) ) = 0 ) |
| 78 | 71 75 77 | 3eqtr3d | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = 0 ) |
| 79 | 23 53 | resubcld | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) e. RR ) |
| 80 | 9 20 13 | 4sqlem7 | |- ( ph -> ( E ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 81 | 10 20 14 | 4sqlem7 | |- ( ph -> ( F ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 82 | 30 36 24 24 80 81 | le2addd | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 83 | 82 40 | breqtrd | |- ( ph -> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
| 84 | 23 53 | subge0d | |- ( ph -> ( 0 <_ ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) <-> ( ( E ^ 2 ) + ( F ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) ) |
| 85 | 83 84 | mpbird | |- ( ph -> 0 <_ ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) |
| 86 | 23 64 | resubcld | |- ( ph -> ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. RR ) |
| 87 | 11 20 15 | 4sqlem7 | |- ( ph -> ( G ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 88 | 12 20 16 | 4sqlem7 | |- ( ph -> ( H ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) |
| 89 | 58 63 24 24 87 88 | le2addd | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 90 | 89 40 | breqtrd | |- ( ph -> ( ( G ^ 2 ) + ( H ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) |
| 91 | 23 64 | subge0d | |- ( ph -> ( 0 <_ ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) <-> ( ( G ^ 2 ) + ( H ^ 2 ) ) <_ ( ( M ^ 2 ) / 2 ) ) ) |
| 92 | 90 91 | mpbird | |- ( ph -> 0 <_ ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 93 | add20 | |- ( ( ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) e. RR /\ 0 <_ ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) ) /\ ( ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) e. RR /\ 0 <_ ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) ) -> ( ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = 0 <-> ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = 0 /\ ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 ) ) ) |
|
| 94 | 79 85 86 92 93 | syl22anc | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = 0 <-> ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = 0 /\ ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 ) ) ) |
| 95 | 94 | biimpa | |- ( ( ph /\ ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) + ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) = 0 ) -> ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = 0 /\ ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 ) ) |
| 96 | 78 95 | syldan | |- ( ( ph /\ R = M ) -> ( ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = 0 /\ ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 ) ) |
| 97 | 96 | simpld | |- ( ( ph /\ R = M ) -> ( ( ( M ^ 2 ) / 2 ) - ( ( E ^ 2 ) + ( F ^ 2 ) ) ) = 0 ) |
| 98 | 43 97 | eqtrd | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) = 0 ) |
| 99 | 24 30 | resubcld | |- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) e. RR ) |
| 100 | 24 30 | subge0d | |- ( ph -> ( 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) <-> ( E ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 101 | 80 100 | mpbird | |- ( ph -> 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) ) |
| 102 | 24 36 | resubcld | |- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) e. RR ) |
| 103 | 24 36 | subge0d | |- ( ph -> ( 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) <-> ( F ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 104 | 81 103 | mpbird | |- ( ph -> 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) |
| 105 | add20 | |- ( ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) ) /\ ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) ) -> ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) = 0 <-> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) ) ) |
|
| 106 | 99 101 102 104 105 | syl22anc | |- ( ph -> ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) = 0 <-> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) ) ) |
| 107 | 106 | biimpa | |- ( ( ph /\ ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) ) = 0 ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) ) |
| 108 | 98 107 | syldan | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) ) |
| 109 | 58 | recnd | |- ( ph -> ( G ^ 2 ) e. CC ) |
| 110 | 63 | recnd | |- ( ph -> ( H ^ 2 ) e. CC ) |
| 111 | 25 25 109 110 | addsub4d | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) ) |
| 112 | 40 | oveq1d | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) + ( ( ( M ^ 2 ) / 2 ) / 2 ) ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 113 | 111 112 | eqtr3d | |- ( ph -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) = ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 114 | 113 | adantr | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) = ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) ) |
| 115 | 96 | simprd | |- ( ( ph /\ R = M ) -> ( ( ( M ^ 2 ) / 2 ) - ( ( G ^ 2 ) + ( H ^ 2 ) ) ) = 0 ) |
| 116 | 114 115 | eqtrd | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) = 0 ) |
| 117 | 24 58 | resubcld | |- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) e. RR ) |
| 118 | 24 58 | subge0d | |- ( ph -> ( 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) <-> ( G ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 119 | 87 118 | mpbird | |- ( ph -> 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) ) |
| 120 | 24 63 | resubcld | |- ( ph -> ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) e. RR ) |
| 121 | 24 63 | subge0d | |- ( ph -> ( 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) <-> ( H ^ 2 ) <_ ( ( ( M ^ 2 ) / 2 ) / 2 ) ) ) |
| 122 | 88 121 | mpbird | |- ( ph -> 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) |
| 123 | add20 | |- ( ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) ) /\ ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) ) -> ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) = 0 <-> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) ) |
|
| 124 | 117 119 120 122 123 | syl22anc | |- ( ph -> ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) = 0 <-> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) ) |
| 125 | 124 | biimpa | |- ( ( ph /\ ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) + ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) ) = 0 ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) |
| 126 | 116 125 | syldan | |- ( ( ph /\ R = M ) -> ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) |
| 127 | 108 126 | jca | |- ( ( ph /\ R = M ) -> ( ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( E ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( F ^ 2 ) ) = 0 ) /\ ( ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( G ^ 2 ) ) = 0 /\ ( ( ( ( M ^ 2 ) / 2 ) / 2 ) - ( H ^ 2 ) ) = 0 ) ) ) |