This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . (Contributed by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 4sqlem5.3 | |- ( ph -> M e. NN ) |
||
| 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
||
| Assertion | 4sqlem6 | |- ( ph -> ( -u ( M / 2 ) <_ B /\ B < ( M / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | |- ( ph -> A e. ZZ ) |
|
| 2 | 4sqlem5.3 | |- ( ph -> M e. NN ) |
|
| 3 | 4sqlem5.4 | |- B = ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) |
|
| 4 | 0red | |- ( ph -> 0 e. RR ) |
|
| 5 | 1 | zred | |- ( ph -> A e. RR ) |
| 6 | 2 | nnred | |- ( ph -> M e. RR ) |
| 7 | 6 | rehalfcld | |- ( ph -> ( M / 2 ) e. RR ) |
| 8 | 5 7 | readdcld | |- ( ph -> ( A + ( M / 2 ) ) e. RR ) |
| 9 | 2 | nnrpd | |- ( ph -> M e. RR+ ) |
| 10 | 8 9 | modcld | |- ( ph -> ( ( A + ( M / 2 ) ) mod M ) e. RR ) |
| 11 | modge0 | |- ( ( ( A + ( M / 2 ) ) e. RR /\ M e. RR+ ) -> 0 <_ ( ( A + ( M / 2 ) ) mod M ) ) |
|
| 12 | 8 9 11 | syl2anc | |- ( ph -> 0 <_ ( ( A + ( M / 2 ) ) mod M ) ) |
| 13 | 4 10 7 12 | lesub1dd | |- ( ph -> ( 0 - ( M / 2 ) ) <_ ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) ) |
| 14 | df-neg | |- -u ( M / 2 ) = ( 0 - ( M / 2 ) ) |
|
| 15 | 13 14 3 | 3brtr4g | |- ( ph -> -u ( M / 2 ) <_ B ) |
| 16 | modlt | |- ( ( ( A + ( M / 2 ) ) e. RR /\ M e. RR+ ) -> ( ( A + ( M / 2 ) ) mod M ) < M ) |
|
| 17 | 8 9 16 | syl2anc | |- ( ph -> ( ( A + ( M / 2 ) ) mod M ) < M ) |
| 18 | 2 | nncnd | |- ( ph -> M e. CC ) |
| 19 | 18 | 2halvesd | |- ( ph -> ( ( M / 2 ) + ( M / 2 ) ) = M ) |
| 20 | 17 19 | breqtrrd | |- ( ph -> ( ( A + ( M / 2 ) ) mod M ) < ( ( M / 2 ) + ( M / 2 ) ) ) |
| 21 | 10 7 7 | ltsubaddd | |- ( ph -> ( ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) < ( M / 2 ) <-> ( ( A + ( M / 2 ) ) mod M ) < ( ( M / 2 ) + ( M / 2 ) ) ) ) |
| 22 | 20 21 | mpbird | |- ( ph -> ( ( ( A + ( M / 2 ) ) mod M ) - ( M / 2 ) ) < ( M / 2 ) ) |
| 23 | 3 22 | eqbrtrid | |- ( ph -> B < ( M / 2 ) ) |
| 24 | 15 23 | jca | |- ( ph -> ( -u ( M / 2 ) <_ B /\ B < ( M / 2 ) ) ) |