This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . The set S is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that S = NN0 ; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| Assertion | 4sqlem1 | |- S C_ NN0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | |- S = { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } |
|
| 2 | zsqcl2 | |- ( x e. ZZ -> ( x ^ 2 ) e. NN0 ) |
|
| 3 | zsqcl2 | |- ( y e. ZZ -> ( y ^ 2 ) e. NN0 ) |
|
| 4 | nn0addcl | |- ( ( ( x ^ 2 ) e. NN0 /\ ( y ^ 2 ) e. NN0 ) -> ( ( x ^ 2 ) + ( y ^ 2 ) ) e. NN0 ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( x ^ 2 ) + ( y ^ 2 ) ) e. NN0 ) |
| 6 | zsqcl2 | |- ( z e. ZZ -> ( z ^ 2 ) e. NN0 ) |
|
| 7 | zsqcl2 | |- ( w e. ZZ -> ( w ^ 2 ) e. NN0 ) |
|
| 8 | nn0addcl | |- ( ( ( z ^ 2 ) e. NN0 /\ ( w ^ 2 ) e. NN0 ) -> ( ( z ^ 2 ) + ( w ^ 2 ) ) e. NN0 ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( z e. ZZ /\ w e. ZZ ) -> ( ( z ^ 2 ) + ( w ^ 2 ) ) e. NN0 ) |
| 10 | nn0addcl | |- ( ( ( ( x ^ 2 ) + ( y ^ 2 ) ) e. NN0 /\ ( ( z ^ 2 ) + ( w ^ 2 ) ) e. NN0 ) -> ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) e. NN0 ) |
|
| 11 | 5 9 10 | syl2an | |- ( ( ( x e. ZZ /\ y e. ZZ ) /\ ( z e. ZZ /\ w e. ZZ ) ) -> ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) e. NN0 ) |
| 12 | eleq1a | |- ( ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) e. NN0 -> ( n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) -> n e. NN0 ) ) |
|
| 13 | 11 12 | syl | |- ( ( ( x e. ZZ /\ y e. ZZ ) /\ ( z e. ZZ /\ w e. ZZ ) ) -> ( n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) -> n e. NN0 ) ) |
| 14 | 13 | rexlimdvva | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) -> n e. NN0 ) ) |
| 15 | 14 | rexlimivv | |- ( E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) -> n e. NN0 ) |
| 16 | 15 | abssi | |- { n | E. x e. ZZ E. y e. ZZ E. z e. ZZ E. w e. ZZ n = ( ( ( x ^ 2 ) + ( y ^ 2 ) ) + ( ( z ^ 2 ) + ( w ^ 2 ) ) ) } C_ NN0 |
| 17 | 1 16 | eqsstri | |- S C_ NN0 |