This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmulcr | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) || ( N x. K ) <-> M || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmulcl | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ ) |
|
| 2 | 1 | 3adant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M x. K ) e. ZZ ) |
| 3 | zmulcl | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ ) |
|
| 4 | 3 | 3adant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( N x. K ) e. ZZ ) |
| 5 | 2 4 | jca | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) ) |
| 6 | 5 | 3adant3r | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) e. ZZ /\ ( N x. K ) e. ZZ ) ) |
| 7 | 3simpa | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 8 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 9 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 10 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 11 | 9 10 | anim12i | |- ( ( x e. ZZ /\ M e. ZZ ) -> ( x e. CC /\ M e. CC ) ) |
| 12 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 13 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 14 | 13 | anim1i | |- ( ( K e. ZZ /\ K =/= 0 ) -> ( K e. CC /\ K =/= 0 ) ) |
| 15 | mulass | |- ( ( x e. CC /\ M e. CC /\ K e. CC ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
|
| 16 | 15 | 3expa | |- ( ( ( x e. CC /\ M e. CC ) /\ K e. CC ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 17 | 16 | adantrr | |- ( ( ( x e. CC /\ M e. CC ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 18 | 17 | 3adant2 | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. M ) x. K ) = ( x x. ( M x. K ) ) ) |
| 19 | 18 | eqeq1d | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. ( M x. K ) ) = ( N x. K ) ) ) |
| 20 | mulcl | |- ( ( x e. CC /\ M e. CC ) -> ( x x. M ) e. CC ) |
|
| 21 | mulcan2 | |- ( ( ( x x. M ) e. CC /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
|
| 22 | 20 21 | syl3an1 | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( ( x x. M ) x. K ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 23 | 19 22 | bitr3d | |- ( ( ( x e. CC /\ M e. CC ) /\ N e. CC /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 24 | 11 12 14 23 | syl3an | |- ( ( ( x e. ZZ /\ M e. ZZ ) /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 25 | 24 | 3expb | |- ( ( ( x e. ZZ /\ M e. ZZ ) /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 26 | 25 | 3impa | |- ( ( x e. ZZ /\ M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 27 | 26 | 3coml | |- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 28 | 27 | 3expia | |- ( ( M e. ZZ /\ ( N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) ) -> ( x e. ZZ -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) ) |
| 29 | 28 | 3impb | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( x e. ZZ -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) ) |
| 30 | 29 | imp | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) <-> ( x x. M ) = N ) ) |
| 31 | 30 | biimpd | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) /\ x e. ZZ ) -> ( ( x x. ( M x. K ) ) = ( N x. K ) -> ( x x. M ) = N ) ) |
| 32 | 6 7 8 31 | dvds1lem | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) || ( N x. K ) -> M || N ) ) |
| 33 | dvdsmulc | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) ) |
|
| 34 | 33 | 3adant3r | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( M || N -> ( M x. K ) || ( N x. K ) ) ) |
| 35 | 32 34 | impbid | |- ( ( M e. ZZ /\ N e. ZZ /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M x. K ) || ( N x. K ) <-> M || N ) ) |