This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if A and B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers A and B , especially if A is itself a decimal number, e.g., A = ; C D . (Contributed by AV, 14-Jun-2021) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3dvdsdec.a | |- A e. NN0 |
|
| 3dvdsdec.b | |- B e. NN0 |
||
| Assertion | 3dvdsdec | |- ( 3 || ; A B <-> 3 || ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3dvdsdec.a | |- A e. NN0 |
|
| 2 | 3dvdsdec.b | |- B e. NN0 |
|
| 3 | dfdec10 | |- ; A B = ( ( ; 1 0 x. A ) + B ) |
|
| 4 | 9p1e10 | |- ( 9 + 1 ) = ; 1 0 |
|
| 5 | 4 | eqcomi | |- ; 1 0 = ( 9 + 1 ) |
| 6 | 5 | oveq1i | |- ( ; 1 0 x. A ) = ( ( 9 + 1 ) x. A ) |
| 7 | 9cn | |- 9 e. CC |
|
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | 1 | nn0cni | |- A e. CC |
| 10 | 7 8 9 | adddiri | |- ( ( 9 + 1 ) x. A ) = ( ( 9 x. A ) + ( 1 x. A ) ) |
| 11 | 9 | mullidi | |- ( 1 x. A ) = A |
| 12 | 11 | oveq2i | |- ( ( 9 x. A ) + ( 1 x. A ) ) = ( ( 9 x. A ) + A ) |
| 13 | 6 10 12 | 3eqtri | |- ( ; 1 0 x. A ) = ( ( 9 x. A ) + A ) |
| 14 | 13 | oveq1i | |- ( ( ; 1 0 x. A ) + B ) = ( ( ( 9 x. A ) + A ) + B ) |
| 15 | 7 9 | mulcli | |- ( 9 x. A ) e. CC |
| 16 | 2 | nn0cni | |- B e. CC |
| 17 | 15 9 16 | addassi | |- ( ( ( 9 x. A ) + A ) + B ) = ( ( 9 x. A ) + ( A + B ) ) |
| 18 | 3 14 17 | 3eqtri | |- ; A B = ( ( 9 x. A ) + ( A + B ) ) |
| 19 | 18 | breq2i | |- ( 3 || ; A B <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) |
| 20 | 3z | |- 3 e. ZZ |
|
| 21 | 1 | nn0zi | |- A e. ZZ |
| 22 | 2 | nn0zi | |- B e. ZZ |
| 23 | zaddcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
|
| 24 | 21 22 23 | mp2an | |- ( A + B ) e. ZZ |
| 25 | 9nn | |- 9 e. NN |
|
| 26 | 25 | nnzi | |- 9 e. ZZ |
| 27 | zmulcl | |- ( ( 9 e. ZZ /\ A e. ZZ ) -> ( 9 x. A ) e. ZZ ) |
|
| 28 | 26 21 27 | mp2an | |- ( 9 x. A ) e. ZZ |
| 29 | zmulcl | |- ( ( 3 e. ZZ /\ A e. ZZ ) -> ( 3 x. A ) e. ZZ ) |
|
| 30 | 20 21 29 | mp2an | |- ( 3 x. A ) e. ZZ |
| 31 | dvdsmul1 | |- ( ( 3 e. ZZ /\ ( 3 x. A ) e. ZZ ) -> 3 || ( 3 x. ( 3 x. A ) ) ) |
|
| 32 | 20 30 31 | mp2an | |- 3 || ( 3 x. ( 3 x. A ) ) |
| 33 | 3t3e9 | |- ( 3 x. 3 ) = 9 |
|
| 34 | 33 | eqcomi | |- 9 = ( 3 x. 3 ) |
| 35 | 34 | oveq1i | |- ( 9 x. A ) = ( ( 3 x. 3 ) x. A ) |
| 36 | 3cn | |- 3 e. CC |
|
| 37 | 36 36 9 | mulassi | |- ( ( 3 x. 3 ) x. A ) = ( 3 x. ( 3 x. A ) ) |
| 38 | 35 37 | eqtri | |- ( 9 x. A ) = ( 3 x. ( 3 x. A ) ) |
| 39 | 32 38 | breqtrri | |- 3 || ( 9 x. A ) |
| 40 | 28 39 | pm3.2i | |- ( ( 9 x. A ) e. ZZ /\ 3 || ( 9 x. A ) ) |
| 41 | dvdsadd2b | |- ( ( 3 e. ZZ /\ ( A + B ) e. ZZ /\ ( ( 9 x. A ) e. ZZ /\ 3 || ( 9 x. A ) ) ) -> ( 3 || ( A + B ) <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) ) |
|
| 42 | 20 24 40 41 | mp3an | |- ( 3 || ( A + B ) <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) |
| 43 | 19 42 | bitr4i | |- ( 3 || ; A B <-> 3 || ( A + B ) ) |