This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negdvdsb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> -u M || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 2 | znegcl | |- ( M e. ZZ -> -u M e. ZZ ) |
|
| 3 | 2 | anim1i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M e. ZZ /\ N e. ZZ ) ) |
| 4 | znegcl | |- ( x e. ZZ -> -u x e. ZZ ) |
|
| 5 | 4 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> -u x e. ZZ ) |
| 6 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 7 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 8 | mul2neg | |- ( ( x e. CC /\ M e. CC ) -> ( -u x x. -u M ) = ( x x. M ) ) |
|
| 9 | 6 7 8 | syl2anr | |- ( ( M e. ZZ /\ x e. ZZ ) -> ( -u x x. -u M ) = ( x x. M ) ) |
| 10 | 9 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( -u x x. -u M ) = ( x x. M ) ) |
| 11 | 10 | eqeq1d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( -u x x. -u M ) = N <-> ( x x. M ) = N ) ) |
| 12 | 11 | biimprd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. M ) = N -> ( -u x x. -u M ) = N ) ) |
| 13 | 1 3 5 12 | dvds1lem | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N -> -u M || N ) ) |
| 14 | mulneg12 | |- ( ( x e. CC /\ M e. CC ) -> ( -u x x. M ) = ( x x. -u M ) ) |
|
| 15 | 6 7 14 | syl2anr | |- ( ( M e. ZZ /\ x e. ZZ ) -> ( -u x x. M ) = ( x x. -u M ) ) |
| 16 | 15 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( -u x x. M ) = ( x x. -u M ) ) |
| 17 | 16 | eqeq1d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( -u x x. M ) = N <-> ( x x. -u M ) = N ) ) |
| 18 | 17 | biimprd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ x e. ZZ ) -> ( ( x x. -u M ) = N -> ( -u x x. M ) = N ) ) |
| 19 | 3 1 5 18 | dvds1lem | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M || N -> M || N ) ) |
| 20 | 13 19 | impbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> -u M || N ) ) |