This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrguss.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| subrguss.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| subrguss.3 | ⊢ 𝑉 = ( Unit ‘ 𝑆 ) | ||
| Assertion | subrguss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrguss.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrguss.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | subrguss.3 | ⊢ 𝑉 = ( Unit ‘ 𝑆 ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) | |
| 8 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) | |
| 9 | 3 5 6 7 8 | isunit | ⊢ ( 𝑥 ∈ 𝑉 ↔ ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 10 | 4 9 | sylib | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 11 | 10 | simpld | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) |
| 12 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 13 | 1 12 | subrg1 | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 15 | 11 14 | breqtrrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) |
| 16 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 17 | 1 16 6 | subrgdvds | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∥r ‘ 𝑆 ) ⊆ ( ∥r ‘ 𝑅 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ∥r ‘ 𝑆 ) ⊆ ( ∥r ‘ 𝑅 ) ) |
| 19 | 18 | ssbrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 20 | 15 19 | mpd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 21 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 23 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 24 | 23 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 26 | 22 25 | eqsstrrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 27 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 28 | 27 3 | unitcl | ⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 30 | 26 29 | sseldd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 31 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 32 | eqid | ⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) | |
| 33 | 3 32 27 | ringinvcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 34 | 31 33 | sylan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 35 | 26 34 | sseldd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 37 | 36 23 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 38 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 39 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 40 | 37 38 39 | dvdsrmul | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 41 | 30 35 40 | syl2anc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 42 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 43 | 23 42 36 39 | opprmul | ⊢ ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 44 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 45 | 3 32 44 5 | unitrinv | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 46 | 31 45 | sylan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 47 | 1 42 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 49 | 48 | oveqd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 50 | 46 49 14 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑅 ) ) |
| 51 | 43 50 | eqtrid | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 52 | 41 51 | breqtrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 53 | 2 12 16 36 38 | isunit | ⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 54 | 20 52 53 | sylanbrc | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑈 ) |
| 55 | 54 | ex | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑈 ) ) |
| 56 | 55 | ssrdv | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |