This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| Assertion | subsubm | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubm.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 3 | 2 | submss | ⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 5 | 1 | submbas | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 7 | 4 6 | sseqtrrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ⊆ 𝑆 ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 9 | 8 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | 7 10 | sstrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 13 | 1 12 | subm0 | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 15 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 16 | 15 | subm0cl | ⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) → ( 0g ‘ 𝐻 ) ∈ 𝐴 ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 0g ‘ 𝐻 ) ∈ 𝐴 ) |
| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐴 ) |
| 19 | 1 | oveq1i | ⊢ ( 𝐻 ↾s 𝐴 ) = ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) |
| 20 | ressabs | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( ( 𝐺 ↾s 𝑆 ) ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) | |
| 21 | 19 20 | eqtrid | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 22 | 7 21 | syldan | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 23 | eqid | ⊢ ( 𝐻 ↾s 𝐴 ) = ( 𝐻 ↾s 𝐴 ) | |
| 24 | 23 | submmnd | ⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) → ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) |
| 26 | 22 25 | eqeltrrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) |
| 27 | submrcl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐺 ∈ Mnd ) |
| 29 | eqid | ⊢ ( 𝐺 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) | |
| 30 | 8 12 29 | issubm2 | ⊢ ( 𝐺 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝐴 ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 31 | 28 30 | syl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝐴 ∧ ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 32 | 11 18 26 31 | mpbir3and | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 33 | 32 7 | jca | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) |
| 34 | simprr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ 𝑆 ) | |
| 35 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 36 | 34 35 | sseqtrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ⊆ ( Base ‘ 𝐻 ) ) |
| 37 | 13 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 38 | 12 | subm0cl | ⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐴 ) |
| 39 | 38 | ad2antrl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐴 ) |
| 40 | 37 39 | eqeltrrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 0g ‘ 𝐻 ) ∈ 𝐴 ) |
| 41 | 21 | adantrl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) = ( 𝐺 ↾s 𝐴 ) ) |
| 42 | 29 | submmnd | ⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) |
| 43 | 42 | ad2antrl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ Mnd ) |
| 44 | 41 43 | eqeltrd | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) |
| 45 | 1 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐻 ∈ Mnd ) |
| 47 | 2 15 23 | issubm2 | ⊢ ( 𝐻 ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 0g ‘ 𝐻 ) ∈ 𝐴 ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 48 | 46 47 | syl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ↔ ( 𝐴 ⊆ ( Base ‘ 𝐻 ) ∧ ( 0g ‘ 𝐻 ) ∈ 𝐴 ∧ ( 𝐻 ↾s 𝐴 ) ∈ Mnd ) ) ) |
| 49 | 36 40 44 48 | mpbir3and | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) → 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ) |
| 50 | 33 49 | impbida | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐴 ∈ ( SubMnd ‘ 𝐻 ) ↔ ( 𝐴 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ⊆ 𝑆 ) ) ) |