This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mhmco | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) → 𝑈 ∈ Mnd ) | |
| 2 | mhmrcl1 | ⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑆 ∈ Mnd ) | |
| 3 | 1 2 | anim12ci | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd ) ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 6 | 4 5 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) → 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 8 | 7 4 | mhmf | ⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 9 | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑇 ) ⟶ ( Base ‘ 𝑈 ) ∧ 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) | |
| 10 | 6 8 9 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 12 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 13 | 7 11 12 | mhmlin | ⊢ ( ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 14 | 13 | 3expb | ⊢ ( ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 15 | 14 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 17 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ) | |
| 18 | 8 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 19 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) | |
| 20 | 18 19 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 21 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) | |
| 22 | 18 21 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
| 23 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 24 | 4 12 23 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 25 | 17 20 22 24 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝐺 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 26 | 16 25 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 27 | 2 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑆 ∈ Mnd ) |
| 28 | 7 11 | mndcl | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 29 | 28 | 3expb | ⊢ ( ( 𝑆 ∈ Mnd ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 30 | 27 29 | sylan | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 31 | fvco3 | ⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) | |
| 32 | 18 30 31 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 33 | fvco3 | ⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 34 | 18 19 33 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 35 | fvco3 | ⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 36 | 18 21 35 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 37 | 34 36 | oveq12d | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 38 | 26 32 37 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 39 | 38 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 40 | 8 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 41 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 42 | 7 41 | mndidcl | ⊢ ( 𝑆 ∈ Mnd → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 43 | 27 42 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
| 44 | fvco3 | ⊢ ( ( 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) ) | |
| 45 | 40 43 44 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 46 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 47 | 41 46 | mhm0 | ⊢ ( 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 48 | 47 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 49 | 48 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 50 | eqid | ⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) | |
| 51 | 46 50 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) → ( 𝐹 ‘ ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑈 ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑈 ) ) |
| 53 | 45 49 52 | 3eqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) |
| 54 | 10 39 53 | 3jca | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) ) |
| 55 | 7 5 11 23 41 50 | ismhm | ⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd ) ∧ ( ( 𝐹 ∘ 𝐺 ) : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 56 | 3 54 55 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ) |