This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variant of Zorn's lemma zorng in which (/) , the union of the empty chain, is not required to be an element of A . (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zornn0g | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → 𝐴 ≠ ∅ ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → 𝐴 ∈ dom card ) | |
| 3 | snfi | ⊢ { ∅ } ∈ Fin | |
| 4 | finnum | ⊢ ( { ∅ } ∈ Fin → { ∅ } ∈ dom card ) | |
| 5 | 3 4 | ax-mp | ⊢ { ∅ } ∈ dom card |
| 6 | unnum | ⊢ ( ( 𝐴 ∈ dom card ∧ { ∅ } ∈ dom card ) → ( 𝐴 ∪ { ∅ } ) ∈ dom card ) | |
| 7 | 2 5 6 | sylancl | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ( 𝐴 ∪ { ∅ } ) ∈ dom card ) |
| 8 | uncom | ⊢ ( 𝐴 ∪ { ∅ } ) = ( { ∅ } ∪ 𝐴 ) | |
| 9 | 8 | sseq2i | ⊢ ( 𝑤 ⊆ ( 𝐴 ∪ { ∅ } ) ↔ 𝑤 ⊆ ( { ∅ } ∪ 𝐴 ) ) |
| 10 | ssundif | ⊢ ( 𝑤 ⊆ ( { ∅ } ∪ 𝐴 ) ↔ ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ) | |
| 11 | 9 10 | bitri | ⊢ ( 𝑤 ⊆ ( 𝐴 ∪ { ∅ } ) ↔ ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ) |
| 12 | difss | ⊢ ( 𝑤 ∖ { ∅ } ) ⊆ 𝑤 | |
| 13 | soss | ⊢ ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝑤 → ( [⊊] Or 𝑤 → [⊊] Or ( 𝑤 ∖ { ∅ } ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( [⊊] Or 𝑤 → [⊊] Or ( 𝑤 ∖ { ∅ } ) ) |
| 15 | ssdif0 | ⊢ ( 𝑤 ⊆ { ∅ } ↔ ( 𝑤 ∖ { ∅ } ) = ∅ ) | |
| 16 | uni0b | ⊢ ( ∪ 𝑤 = ∅ ↔ 𝑤 ⊆ { ∅ } ) | |
| 17 | 16 | biimpri | ⊢ ( 𝑤 ⊆ { ∅ } → ∪ 𝑤 = ∅ ) |
| 18 | 17 | eleq1d | ⊢ ( 𝑤 ⊆ { ∅ } → ( ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ↔ ∅ ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 19 | 15 18 | sylbir | ⊢ ( ( 𝑤 ∖ { ∅ } ) = ∅ → ( ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ↔ ∅ ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( ( 𝑤 ∖ { ∅ } ) = ∅ → ( ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ↔ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ∪ { ∅ } ) ) ) ) |
| 21 | vex | ⊢ 𝑤 ∈ V | |
| 22 | 21 | difexi | ⊢ ( 𝑤 ∖ { ∅ } ) ∈ V |
| 23 | sseq1 | ⊢ ( 𝑧 = ( 𝑤 ∖ { ∅ } ) → ( 𝑧 ⊆ 𝐴 ↔ ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ) ) | |
| 24 | neeq1 | ⊢ ( 𝑧 = ( 𝑤 ∖ { ∅ } ) → ( 𝑧 ≠ ∅ ↔ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ) ) | |
| 25 | soeq2 | ⊢ ( 𝑧 = ( 𝑤 ∖ { ∅ } ) → ( [⊊] Or 𝑧 ↔ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) ) | |
| 26 | 23 24 25 | 3anbi123d | ⊢ ( 𝑧 = ( 𝑤 ∖ { ∅ } ) → ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) ↔ ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) ) ) |
| 27 | unieq | ⊢ ( 𝑧 = ( 𝑤 ∖ { ∅ } ) → ∪ 𝑧 = ∪ ( 𝑤 ∖ { ∅ } ) ) | |
| 28 | 27 | eleq1d | ⊢ ( 𝑧 = ( 𝑤 ∖ { ∅ } ) → ( ∪ 𝑧 ∈ 𝐴 ↔ ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 ) ) |
| 29 | 26 28 | imbi12d | ⊢ ( 𝑧 = ( 𝑤 ∖ { ∅ } ) → ( ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ↔ ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) → ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 ) ) ) |
| 30 | 22 29 | spcv | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) → ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 ) ) |
| 31 | 30 | com12 | ⊢ ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 ) ) |
| 32 | 31 | 3expa | ⊢ ( ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ) ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 ) ) |
| 33 | 32 | an32s | ⊢ ( ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) ∧ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 ) ) |
| 34 | unidif0 | ⊢ ∪ ( 𝑤 ∖ { ∅ } ) = ∪ 𝑤 | |
| 35 | 34 | eleq1i | ⊢ ( ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 ↔ ∪ 𝑤 ∈ 𝐴 ) |
| 36 | elun1 | ⊢ ( ∪ 𝑤 ∈ 𝐴 → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) | |
| 37 | 35 36 | sylbi | ⊢ ( ∪ ( 𝑤 ∖ { ∅ } ) ∈ 𝐴 → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) |
| 38 | 33 37 | syl6 | ⊢ ( ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) ∧ ( 𝑤 ∖ { ∅ } ) ≠ ∅ ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 39 | 0ex | ⊢ ∅ ∈ V | |
| 40 | 39 | snid | ⊢ ∅ ∈ { ∅ } |
| 41 | elun2 | ⊢ ( ∅ ∈ { ∅ } → ∅ ∈ ( 𝐴 ∪ { ∅ } ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ∅ ∈ ( 𝐴 ∪ { ∅ } ) |
| 43 | 42 | 2a1i | ⊢ ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 44 | 20 38 43 | pm2.61ne | ⊢ ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ [⊊] Or ( 𝑤 ∖ { ∅ } ) ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 45 | 14 44 | sylan2 | ⊢ ( ( ( 𝑤 ∖ { ∅ } ) ⊆ 𝐴 ∧ [⊊] Or 𝑤 ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 46 | 11 45 | sylanb | ⊢ ( ( 𝑤 ⊆ ( 𝐴 ∪ { ∅ } ) ∧ [⊊] Or 𝑤 ) → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 47 | 46 | com12 | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ⊆ ( 𝐴 ∪ { ∅ } ) ∧ [⊊] Or 𝑤 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 48 | 47 | alrimiv | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ( ( 𝑤 ⊆ ( 𝐴 ∪ { ∅ } ) ∧ [⊊] Or 𝑤 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 49 | 48 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∀ 𝑤 ( ( 𝑤 ⊆ ( 𝐴 ∪ { ∅ } ) ∧ [⊊] Or 𝑤 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) |
| 50 | zorng | ⊢ ( ( ( 𝐴 ∪ { ∅ } ) ∈ dom card ∧ ∀ 𝑤 ( ( 𝑤 ⊆ ( 𝐴 ∪ { ∅ } ) ∧ [⊊] Or 𝑤 ) → ∪ 𝑤 ∈ ( 𝐴 ∪ { ∅ } ) ) ) → ∃ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { ∅ } ) ¬ 𝑥 ⊊ 𝑦 ) | |
| 51 | 7 49 50 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { ∅ } ) ¬ 𝑥 ⊊ 𝑦 ) |
| 52 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ { ∅ } ) | |
| 53 | ssralv | ⊢ ( 𝐴 ⊆ ( 𝐴 ∪ { ∅ } ) → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { ∅ } ) ¬ 𝑥 ⊊ 𝑦 → ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) | |
| 54 | 52 53 | ax-mp | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ { ∅ } ) ¬ 𝑥 ⊊ 𝑦 → ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 55 | 54 | reximi | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { ∅ } ) ¬ 𝑥 ⊊ 𝑦 → ∃ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 56 | rexun | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ↔ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ∨ ∃ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) | |
| 57 | simpr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) | |
| 58 | simpr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) | |
| 59 | psseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊊ 𝑦 ↔ ∅ ⊊ 𝑦 ) ) | |
| 60 | 0pss | ⊢ ( ∅ ⊊ 𝑦 ↔ 𝑦 ≠ ∅ ) | |
| 61 | 59 60 | bitrdi | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊊ 𝑦 ↔ 𝑦 ≠ ∅ ) ) |
| 62 | 61 | notbid | ⊢ ( 𝑥 = ∅ → ( ¬ 𝑥 ⊊ 𝑦 ↔ ¬ 𝑦 ≠ ∅ ) ) |
| 63 | nne | ⊢ ( ¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅ ) | |
| 64 | 62 63 | bitrdi | ⊢ ( 𝑥 = ∅ → ( ¬ 𝑥 ⊊ 𝑦 ↔ 𝑦 = ∅ ) ) |
| 65 | 64 | ralbidv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = ∅ ) ) |
| 66 | 39 65 | rexsn | ⊢ ( ∃ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = ∅ ) |
| 67 | eqsn | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = { ∅ } ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = ∅ ) ) | |
| 68 | 67 | biimpar | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 = ∅ ) → 𝐴 = { ∅ } ) |
| 69 | 66 68 | sylan2b | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) → 𝐴 = { ∅ } ) |
| 70 | 58 69 | rexeqtrrdv | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 71 | 57 70 | jaodan | ⊢ ( ( 𝐴 ≠ ∅ ∧ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ∨ ∃ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 72 | 56 71 | sylan2b | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 73 | 55 72 | sylan2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ( 𝐴 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { ∅ } ) ¬ 𝑥 ⊊ 𝑦 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 74 | 1 51 73 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |