This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of Enderton p. 151. This version of zorn avoids the Axiom of Choice by assuming that A is well-orderable. (Contributed by NM, 12-Aug-2004) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zorng | ⊢ ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset | ⊢ ( ∪ 𝑧 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 ) | |
| 2 | eqimss2 | ⊢ ( 𝑥 = ∪ 𝑧 → ∪ 𝑧 ⊆ 𝑥 ) | |
| 3 | unissb | ⊢ ( ∪ 𝑧 ⊆ 𝑥 ↔ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥 ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝑥 = ∪ 𝑧 → ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥 ) |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | brrpss | ⊢ ( 𝑢 [⊊] 𝑥 ↔ 𝑢 ⊊ 𝑥 ) |
| 7 | 6 | orbi1i | ⊢ ( ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ↔ ( 𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 8 | sspss | ⊢ ( 𝑢 ⊆ 𝑥 ↔ ( 𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ↔ 𝑢 ⊆ 𝑥 ) |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ↔ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥 ) |
| 11 | 4 10 | sylibr | ⊢ ( 𝑥 = ∪ 𝑧 → ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 12 | 11 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 13 | 1 12 | sylbi | ⊢ ( ∪ 𝑧 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 14 | 13 | imim2i | ⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) |
| 15 | 14 | alimi | ⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) |
| 16 | porpss | ⊢ [⊊] Po 𝐴 | |
| 17 | zorn2g | ⊢ ( ( 𝐴 ∈ dom card ∧ [⊊] Po 𝐴 ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ) | |
| 18 | 16 17 | mp3an2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ) |
| 19 | 15 18 | sylan2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ) |
| 20 | vex | ⊢ 𝑦 ∈ V | |
| 21 | 20 | brrpss | ⊢ ( 𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦 ) |
| 22 | 21 | notbii | ⊢ ( ¬ 𝑥 [⊊] 𝑦 ↔ ¬ 𝑥 ⊊ 𝑦 ) |
| 23 | 22 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 24 | 23 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 25 | 19 24 | sylib | ⊢ ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |