This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unidif0 | ⊢ ∪ ( 𝐴 ∖ { ∅ } ) = ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniun | ⊢ ∪ ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) = ( ∪ ( 𝐴 ∖ { ∅ } ) ∪ ∪ { ∅ } ) | |
| 2 | undif1 | ⊢ ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) = ( 𝐴 ∪ { ∅ } ) | |
| 3 | uncom | ⊢ ( 𝐴 ∪ { ∅ } ) = ( { ∅ } ∪ 𝐴 ) | |
| 4 | 2 3 | eqtr2i | ⊢ ( { ∅ } ∪ 𝐴 ) = ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) |
| 5 | 4 | unieqi | ⊢ ∪ ( { ∅ } ∪ 𝐴 ) = ∪ ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 6 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 8 | 7 | uneq2i | ⊢ ( ∪ ( 𝐴 ∖ { ∅ } ) ∪ ∪ { ∅ } ) = ( ∪ ( 𝐴 ∖ { ∅ } ) ∪ ∅ ) |
| 9 | un0 | ⊢ ( ∪ ( 𝐴 ∖ { ∅ } ) ∪ ∅ ) = ∪ ( 𝐴 ∖ { ∅ } ) | |
| 10 | 8 9 | eqtr2i | ⊢ ∪ ( 𝐴 ∖ { ∅ } ) = ( ∪ ( 𝐴 ∖ { ∅ } ) ∪ ∪ { ∅ } ) |
| 11 | 1 5 10 | 3eqtr4ri | ⊢ ∪ ( 𝐴 ∖ { ∅ } ) = ∪ ( { ∅ } ∪ 𝐴 ) |
| 12 | uniun | ⊢ ∪ ( { ∅ } ∪ 𝐴 ) = ( ∪ { ∅ } ∪ ∪ 𝐴 ) | |
| 13 | 7 | uneq1i | ⊢ ( ∪ { ∅ } ∪ ∪ 𝐴 ) = ( ∅ ∪ ∪ 𝐴 ) |
| 14 | 11 12 13 | 3eqtri | ⊢ ∪ ( 𝐴 ∖ { ∅ } ) = ( ∅ ∪ ∪ 𝐴 ) |
| 15 | uncom | ⊢ ( ∅ ∪ ∪ 𝐴 ) = ( ∪ 𝐴 ∪ ∅ ) | |
| 16 | un0 | ⊢ ( ∪ 𝐴 ∪ ∅ ) = ∪ 𝐴 | |
| 17 | 14 15 16 | 3eqtri | ⊢ ∪ ( 𝐴 ∖ { ∅ } ) = ∪ 𝐴 |