This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 6-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | ||
| zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | ||
| zorn2lem.7 | ⊢ 𝐻 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } | ||
| Assertion | zorn2lem7 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| 2 | zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | |
| 3 | zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | |
| 4 | zorn2lem.7 | ⊢ 𝐻 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } | |
| 5 | ween | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑤 𝑤 We 𝐴 ) | |
| 6 | 1 2 3 | zorn2lem4 | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑤 We 𝐴 ) → ∃ 𝑥 ∈ On 𝐷 = ∅ ) |
| 7 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) | |
| 8 | 7 | raleqdv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 ) ) |
| 9 | 8 | rabbidv | ⊢ ( 𝑥 = 𝑦 → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ) |
| 10 | 9 3 4 | 3eqtr4g | ⊢ ( 𝑥 = 𝑦 → 𝐷 = 𝐻 ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐷 = ∅ ↔ 𝐻 = ∅ ) ) |
| 12 | 11 | onminex | ⊢ ( ∃ 𝑥 ∈ On 𝐷 = ∅ → ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) ) |
| 13 | df-ne | ⊢ ( 𝐻 ≠ ∅ ↔ ¬ 𝐻 = ∅ ) | |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ↔ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) |
| 15 | 14 | anbi2i | ⊢ ( ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ↔ ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) ) |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ↔ ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) ) |
| 17 | 12 16 | sylibr | ⊢ ( ∃ 𝑥 ∈ On 𝐷 = ∅ → ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) |
| 18 | 1 2 3 4 | zorn2lem5 | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
| 19 | 18 | a1i | ⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
| 20 | 1 2 3 4 | zorn2lem6 | ⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) |
| 21 | 19 20 | jcad | ⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) ) |
| 22 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 23 | fnfun | ⊢ ( 𝐹 Fn On → Fun 𝐹 ) | |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | 24 | funimaex | ⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ V ) |
| 26 | 22 23 25 | mp2b | ⊢ ( 𝐹 “ 𝑥 ) ∈ V |
| 27 | sseq1 | ⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( 𝑠 ⊆ 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) | |
| 28 | soeq2 | ⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( 𝑅 Or 𝑠 ↔ 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) ) |
| 30 | raleq | ⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ↔ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) | |
| 31 | 30 | rexbidv | ⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ↔ ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
| 32 | 29 31 | imbi12d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ↔ ( ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ) |
| 33 | 26 32 | spcv | ⊢ ( ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
| 34 | 21 33 | sylan9 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
| 35 | 34 | adantld | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
| 36 | 35 | imp | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) |
| 37 | noel | ⊢ ¬ 𝑏 ∈ ∅ | |
| 38 | 18 | sseld | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → 𝑟 ∈ 𝐴 ) ) |
| 39 | 3anass | ⊢ ( ( 𝑟 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ↔ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) | |
| 40 | potr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑟 𝑅 𝑎 ∧ 𝑎 𝑅 𝑏 ) → 𝑟 𝑅 𝑏 ) ) | |
| 41 | 39 40 | sylan2br | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) → ( ( 𝑟 𝑅 𝑎 ∧ 𝑎 𝑅 𝑏 ) → 𝑟 𝑅 𝑏 ) ) |
| 42 | 41 | expcomd | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) → ( 𝑎 𝑅 𝑏 → ( 𝑟 𝑅 𝑎 → 𝑟 𝑅 𝑏 ) ) ) |
| 43 | 42 | imp | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ 𝑎 𝑅 𝑏 ) → ( 𝑟 𝑅 𝑎 → 𝑟 𝑅 𝑏 ) ) |
| 44 | breq1 | ⊢ ( 𝑟 = 𝑎 → ( 𝑟 𝑅 𝑏 ↔ 𝑎 𝑅 𝑏 ) ) | |
| 45 | 44 | biimprcd | ⊢ ( 𝑎 𝑅 𝑏 → ( 𝑟 = 𝑎 → 𝑟 𝑅 𝑏 ) ) |
| 46 | 45 | adantl | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ 𝑎 𝑅 𝑏 ) → ( 𝑟 = 𝑎 → 𝑟 𝑅 𝑏 ) ) |
| 47 | 43 46 | jaod | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ 𝑎 𝑅 𝑏 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) |
| 48 | 47 | exp42 | ⊢ ( 𝑅 Po 𝐴 → ( 𝑟 ∈ 𝐴 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑎 𝑅 𝑏 → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
| 49 | 38 48 | sylan9r | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑎 𝑅 𝑏 → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
| 50 | 49 | com24 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 𝑅 𝑏 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
| 51 | 50 | com23 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑎 𝑅 𝑏 → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
| 52 | 51 | imp31 | ⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) |
| 53 | 52 | a2d | ⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) → ( ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → 𝑟 𝑅 𝑏 ) ) ) |
| 54 | 53 | ralimdv2 | ⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) 𝑟 𝑅 𝑏 ) ) |
| 55 | breq1 | ⊢ ( 𝑟 = 𝑔 → ( 𝑟 𝑅 𝑏 ↔ 𝑔 𝑅 𝑏 ) ) | |
| 56 | 55 | cbvralvw | ⊢ ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) 𝑟 𝑅 𝑏 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) |
| 57 | breq2 | ⊢ ( 𝑧 = 𝑏 → ( 𝑔 𝑅 𝑧 ↔ 𝑔 𝑅 𝑏 ) ) | |
| 58 | 57 | ralbidv | ⊢ ( 𝑧 = 𝑏 → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) ) |
| 59 | 58 | elrab | ⊢ ( 𝑏 ∈ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ↔ ( 𝑏 ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) ) |
| 60 | 3 | eqeq1i | ⊢ ( 𝐷 = ∅ ↔ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } = ∅ ) |
| 61 | eleq2 | ⊢ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } = ∅ → ( 𝑏 ∈ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ↔ 𝑏 ∈ ∅ ) ) | |
| 62 | 60 61 | sylbi | ⊢ ( 𝐷 = ∅ → ( 𝑏 ∈ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ↔ 𝑏 ∈ ∅ ) ) |
| 63 | 59 62 | bitr3id | ⊢ ( 𝐷 = ∅ → ( ( 𝑏 ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) ↔ 𝑏 ∈ ∅ ) ) |
| 64 | 63 | biimpd | ⊢ ( 𝐷 = ∅ → ( ( 𝑏 ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) → 𝑏 ∈ ∅ ) ) |
| 65 | 64 | expdimp | ⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) |
| 66 | 56 65 | biimtrid | ⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) 𝑟 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) |
| 67 | 54 66 | sylan9r | ⊢ ( ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑏 ∈ ∅ ) ) |
| 68 | 67 | exp32 | ⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑏 ∈ ∅ ) ) ) ) |
| 69 | 68 | com34 | ⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ( 𝑎 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) ) ) |
| 70 | 69 | imp31 | ⊢ ( ( ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( 𝑎 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) |
| 71 | 37 70 | mtoi | ⊢ ( ( ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ¬ 𝑎 𝑅 𝑏 ) |
| 72 | 71 | exp42 | ⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 73 | 72 | exp4a | ⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 ∈ 𝐴 → ( 𝑏 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) |
| 74 | 73 | com34 | ⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑏 ∈ 𝐴 → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) |
| 75 | 74 | ex | ⊢ ( 𝐷 = ∅ → ( 𝑏 ∈ 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑏 ∈ 𝐴 → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) ) |
| 76 | 75 | com4r | ⊢ ( 𝑏 ∈ 𝐴 → ( 𝐷 = ∅ → ( 𝑏 ∈ 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) ) |
| 77 | 76 | pm2.43a | ⊢ ( 𝑏 ∈ 𝐴 → ( 𝐷 = ∅ → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) |
| 78 | 77 | impd | ⊢ ( 𝑏 ∈ 𝐴 → ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 79 | 78 | com4l | ⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ( 𝑏 ∈ 𝐴 → ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 80 | 79 | impd | ⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ( 𝑎 ∈ 𝐴 ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( 𝑏 ∈ 𝐴 → ¬ 𝑎 𝑅 𝑏 ) ) ) |
| 81 | 80 | ralrimdv | ⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ( 𝑎 ∈ 𝐴 ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 82 | 81 | expd | ⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) |
| 83 | 82 | reximdvai | ⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 84 | 83 | exp32 | ⊢ ( 𝐷 = ∅ → ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 85 | 84 | com12 | ⊢ ( 𝑅 Po 𝐴 → ( 𝐷 = ∅ → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 86 | 85 | adantr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( 𝐷 = ∅ → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 87 | 86 | imp32 | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 88 | 36 87 | mpd | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) |
| 89 | 88 | exp45 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( 𝐷 = ∅ → ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 90 | 89 | com23 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( 𝐷 = ∅ → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 91 | 90 | expdimp | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ( 𝑥 ∈ On → ( 𝐷 = ∅ → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
| 92 | 91 | imp4a | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ( 𝑥 ∈ On → ( ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) |
| 93 | 92 | com3l | ⊢ ( 𝑥 ∈ On → ( ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) |
| 94 | 93 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 95 | 6 17 94 | 3syl | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑤 We 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 96 | 95 | adantlr | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 97 | 96 | pm2.43i | ⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) |
| 98 | 97 | expcom | ⊢ ( 𝑤 We 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 99 | 98 | exlimiv | ⊢ ( ∃ 𝑤 𝑤 We 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 100 | 5 99 | sylbi | ⊢ ( 𝐴 ∈ dom card → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
| 101 | 100 | 3impib | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) |