This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zorn's Lemma of Monk1 p. 117. This version of zorn2 avoids the Axiom of Choice by assuming that A is well-orderable. (Contributed by NM, 6-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zorn2g | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀ 𝑤 ( ( 𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝑤 ( 𝑧 𝑅 𝑥 ∨ 𝑧 = 𝑥 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑔 = 𝑘 → ( 𝑔 𝑞 𝑛 ↔ 𝑘 𝑞 𝑛 ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝑔 = 𝑘 → ( ¬ 𝑔 𝑞 𝑛 ↔ ¬ 𝑘 𝑞 𝑛 ) ) |
| 3 | 2 | cbvralvw | ⊢ ( ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ↔ ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑛 ) |
| 4 | breq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑘 𝑞 𝑛 ↔ 𝑘 𝑞 𝑚 ) ) | |
| 5 | 4 | notbid | ⊢ ( 𝑛 = 𝑚 → ( ¬ 𝑘 𝑞 𝑛 ↔ ¬ 𝑘 𝑞 𝑚 ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑛 ↔ ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) |
| 7 | 3 6 | bitrid | ⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ↔ ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) |
| 8 | 7 | cbvriotavw | ⊢ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) = ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) |
| 9 | rneq | ⊢ ( ℎ = 𝑑 → ran ℎ = ran 𝑑 ) | |
| 10 | 9 | raleqdv | ⊢ ( ℎ = 𝑑 → ( ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 ↔ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 ) ) |
| 11 | 10 | rabbidv | ⊢ ( ℎ = 𝑑 → { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } = { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ) |
| 12 | 11 | raleqdv | ⊢ ( ℎ = 𝑑 → ( ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ↔ ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) |
| 13 | 11 12 | riotaeqbidv | ⊢ ( ℎ = 𝑑 → ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) = ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) |
| 14 | 8 13 | eqtrid | ⊢ ( ℎ = 𝑑 → ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) = ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) |
| 15 | 14 | cbvmptv | ⊢ ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) = ( 𝑑 ∈ V ↦ ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) |
| 16 | recseq | ⊢ ( ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) = ( 𝑑 ∈ V ↦ ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) → recs ( ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) ) = recs ( ( 𝑑 ∈ V ↦ ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) ) ) | |
| 17 | 15 16 | ax-mp | ⊢ recs ( ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) ) = recs ( ( 𝑑 ∈ V ↦ ( ℩ 𝑚 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ∀ 𝑘 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } ¬ 𝑘 𝑞 𝑚 ) ) ) |
| 18 | breq1 | ⊢ ( 𝑞 = 𝑠 → ( 𝑞 𝑅 𝑣 ↔ 𝑠 𝑅 𝑣 ) ) | |
| 19 | 18 | cbvralvw | ⊢ ( ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 ↔ ∀ 𝑠 ∈ ran 𝑑 𝑠 𝑅 𝑣 ) |
| 20 | breq2 | ⊢ ( 𝑣 = 𝑟 → ( 𝑠 𝑅 𝑣 ↔ 𝑠 𝑅 𝑟 ) ) | |
| 21 | 20 | ralbidv | ⊢ ( 𝑣 = 𝑟 → ( ∀ 𝑠 ∈ ran 𝑑 𝑠 𝑅 𝑣 ↔ ∀ 𝑠 ∈ ran 𝑑 𝑠 𝑅 𝑟 ) ) |
| 22 | 19 21 | bitrid | ⊢ ( 𝑣 = 𝑟 → ( ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 ↔ ∀ 𝑠 ∈ ran 𝑑 𝑠 𝑅 𝑟 ) ) |
| 23 | 22 | cbvrabv | ⊢ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran 𝑑 𝑞 𝑅 𝑣 } = { 𝑟 ∈ 𝐴 ∣ ∀ 𝑠 ∈ ran 𝑑 𝑠 𝑅 𝑟 } |
| 24 | eqid | ⊢ { 𝑟 ∈ 𝐴 ∣ ∀ 𝑠 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) ) “ 𝑢 ) 𝑠 𝑅 𝑟 } = { 𝑟 ∈ 𝐴 ∣ ∀ 𝑠 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) ) “ 𝑢 ) 𝑠 𝑅 𝑟 } | |
| 25 | eqid | ⊢ { 𝑟 ∈ 𝐴 ∣ ∀ 𝑠 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) ) “ 𝑡 ) 𝑠 𝑅 𝑟 } = { 𝑟 ∈ 𝐴 ∣ ∀ 𝑠 ∈ ( recs ( ( ℎ ∈ V ↦ ( ℩ 𝑛 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ∀ 𝑔 ∈ { 𝑣 ∈ 𝐴 ∣ ∀ 𝑞 ∈ ran ℎ 𝑞 𝑅 𝑣 } ¬ 𝑔 𝑞 𝑛 ) ) ) “ 𝑡 ) 𝑠 𝑅 𝑟 } | |
| 26 | 17 23 24 25 | zorn2lem7 | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀ 𝑤 ( ( 𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝑤 ( 𝑧 𝑅 𝑥 ∨ 𝑧 = 𝑥 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) |