This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 4-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | ||
| zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | ||
| zorn2lem.7 | ⊢ 𝐻 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } | ||
| Assertion | zorn2lem5 | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| 2 | zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | |
| 3 | zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | |
| 4 | zorn2lem.7 | ⊢ 𝐻 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } | |
| 5 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 6 | fnfun | ⊢ ( 𝐹 Fn On → Fun 𝐹 ) | |
| 7 | 5 6 | ax-mp | ⊢ Fun 𝐹 |
| 8 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑠 ∈ ( 𝐹 “ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑠 ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝑠 ∈ ( 𝐹 “ 𝑥 ) → ∃ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑠 ) |
| 10 | nfv | ⊢ Ⅎ 𝑦 ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) | |
| 11 | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ | |
| 12 | 10 11 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) |
| 13 | nfv | ⊢ Ⅎ 𝑦 𝑠 ∈ 𝐴 | |
| 14 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝐻 ≠ ∅ ) ) | |
| 15 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 16 | 4 | ssrab3 | ⊢ 𝐻 ⊆ 𝐴 |
| 17 | 1 2 4 | zorn2lem1 | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐻 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐻 ) |
| 18 | 16 17 | sselid | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐻 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 ) |
| 19 | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐴 ↔ 𝑠 ∈ 𝐴 ) ) | |
| 20 | 18 19 | imbitrid | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → ( ( 𝑦 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐻 ≠ ∅ ) ) → 𝑠 ∈ 𝐴 ) ) |
| 21 | 15 20 | sylani | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 We 𝐴 ∧ 𝐻 ≠ ∅ ) ) → 𝑠 ∈ 𝐴 ) ) |
| 22 | 21 | com12 | ⊢ ( ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 We 𝐴 ∧ 𝐻 ≠ ∅ ) ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) |
| 23 | 22 | exp43 | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝑤 We 𝐴 → ( 𝐻 ≠ ∅ → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) ) ) ) |
| 24 | 23 | com3r | ⊢ ( 𝑤 We 𝐴 → ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝐻 ≠ ∅ → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( 𝑦 ∈ 𝑥 → ( 𝐻 ≠ ∅ → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) ) ) |
| 26 | 25 | a2d | ⊢ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ( 𝑦 ∈ 𝑥 → 𝐻 ≠ ∅ ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) ) ) |
| 27 | 26 | spsd | ⊢ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝐻 ≠ ∅ ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) ) ) |
| 28 | 14 27 | biimtrid | ⊢ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ( 𝑦 ∈ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) ) ) |
| 29 | 28 | imp | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) ) |
| 30 | 12 13 29 | rexlimd | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) = 𝑠 → 𝑠 ∈ 𝐴 ) ) |
| 31 | 9 30 | syl5 | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝑠 ∈ ( 𝐹 “ 𝑥 ) → 𝑠 ∈ 𝐴 ) ) |
| 32 | 31 | ssrdv | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |