This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zorn2 . (Contributed by NM, 4-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | ||
| zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | ||
| zorn2lem.7 | ⊢ 𝐻 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } | ||
| Assertion | zorn2lem6 | ⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | ⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) | |
| 2 | zorn2lem.4 | ⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } | |
| 3 | zorn2lem.5 | ⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } | |
| 4 | zorn2lem.7 | ⊢ 𝐻 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } | |
| 5 | poss | ⊢ ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 → ( 𝑅 Po 𝐴 → 𝑅 Po ( 𝐹 “ 𝑥 ) ) ) | |
| 6 | 1 2 3 4 | zorn2lem5 | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
| 7 | 5 6 | syl11 | ⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → 𝑅 Po ( 𝐹 “ 𝑥 ) ) ) |
| 8 | 1 | tfr1 | ⊢ 𝐹 Fn On |
| 9 | fnfun | ⊢ ( 𝐹 Fn On → Fun 𝐹 ) | |
| 10 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑠 ∈ ( 𝐹 “ 𝑥 ) ) → ∃ 𝑏 ∈ 𝑥 ( 𝐹 ‘ 𝑏 ) = 𝑠 ) | |
| 11 | df-rex | ⊢ ( ∃ 𝑏 ∈ 𝑥 ( 𝐹 ‘ 𝑏 ) = 𝑠 ↔ ∃ 𝑏 ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( Fun 𝐹 ∧ 𝑠 ∈ ( 𝐹 “ 𝑥 ) ) → ∃ 𝑏 ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ) |
| 13 | 12 | ex | ⊢ ( Fun 𝐹 → ( 𝑠 ∈ ( 𝐹 “ 𝑥 ) → ∃ 𝑏 ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ) ) |
| 14 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ) → ∃ 𝑎 ∈ 𝑥 ( 𝐹 ‘ 𝑎 ) = 𝑟 ) | |
| 15 | df-rex | ⊢ ( ∃ 𝑎 ∈ 𝑥 ( 𝐹 ‘ 𝑎 ) = 𝑟 ↔ ∃ 𝑎 ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) | |
| 16 | 14 15 | sylib | ⊢ ( ( Fun 𝐹 ∧ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ) → ∃ 𝑎 ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) |
| 17 | 16 | ex | ⊢ ( Fun 𝐹 → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ∃ 𝑎 ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) |
| 18 | 13 17 | anim12d | ⊢ ( Fun 𝐹 → ( ( 𝑠 ∈ ( 𝐹 “ 𝑥 ) ∧ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ) → ( ∃ 𝑏 ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ∧ ∃ 𝑎 ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) ) |
| 19 | 8 9 18 | mp2b | ⊢ ( ( 𝑠 ∈ ( 𝐹 “ 𝑥 ) ∧ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ) → ( ∃ 𝑏 ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ∧ ∃ 𝑎 ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) |
| 20 | an4 | ⊢ ( ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ↔ ( ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ∧ ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) | |
| 21 | 20 | 2exbii | ⊢ ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ↔ ∃ 𝑏 ∃ 𝑎 ( ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ∧ ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) |
| 22 | exdistrv | ⊢ ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ∧ ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ↔ ( ∃ 𝑏 ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ∧ ∃ 𝑎 ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) | |
| 23 | 21 22 | bitri | ⊢ ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ↔ ( ∃ 𝑏 ( 𝑏 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) ∧ ∃ 𝑎 ( 𝑎 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) |
| 24 | 19 23 | sylibr | ⊢ ( ( 𝑠 ∈ ( 𝐹 “ 𝑥 ) ∧ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ) → ∃ 𝑏 ∃ 𝑎 ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) ) |
| 25 | 4 | neeq1i | ⊢ ( 𝐻 ≠ ∅ ↔ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) |
| 26 | 25 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ↔ ∀ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) |
| 27 | imaeq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ 𝑏 ) ) | |
| 28 | 27 | raleqdv | ⊢ ( 𝑦 = 𝑏 → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 ) ) |
| 29 | 28 | rabbidv | ⊢ ( 𝑦 = 𝑏 → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ) |
| 30 | 29 | neeq1d | ⊢ ( 𝑦 = 𝑏 → ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ≠ ∅ ↔ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) |
| 31 | 30 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ≠ ∅ → ( 𝑏 ∈ 𝑥 → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) |
| 32 | imaeq2 | ⊢ ( 𝑦 = 𝑎 → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ 𝑎 ) ) | |
| 33 | 32 | raleqdv | ⊢ ( 𝑦 = 𝑎 → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 ) ) |
| 34 | 33 | rabbidv | ⊢ ( 𝑦 = 𝑎 → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ) |
| 35 | 34 | neeq1d | ⊢ ( 𝑦 = 𝑎 → ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ≠ ∅ ↔ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) |
| 36 | 35 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ≠ ∅ → ( 𝑎 ∈ 𝑥 → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) |
| 37 | 31 36 | anim12d | ⊢ ( ∀ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ≠ ∅ → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) |
| 38 | 26 37 | sylbi | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) |
| 39 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑏 ∈ 𝑥 ) → 𝑏 ∈ On ) | |
| 40 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑎 ∈ 𝑥 ) → 𝑎 ∈ On ) | |
| 41 | 39 40 | anim12dan | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) ) → ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ) |
| 42 | 41 | ex | ⊢ ( 𝑥 ∈ On → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ) ) |
| 43 | eloni | ⊢ ( 𝑏 ∈ On → Ord 𝑏 ) | |
| 44 | eloni | ⊢ ( 𝑎 ∈ On → Ord 𝑎 ) | |
| 45 | ordtri3or | ⊢ ( ( Ord 𝑏 ∧ Ord 𝑎 ) → ( 𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏 ) ) | |
| 46 | 43 44 45 | syl2an | ⊢ ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) → ( 𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏 ) ) |
| 47 | eqid | ⊢ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } | |
| 48 | 1 2 47 | zorn2lem2 | ⊢ ( ( 𝑎 ∈ On ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( 𝑏 ∈ 𝑎 → ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) |
| 49 | 48 | adantll | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( 𝑏 ∈ 𝑎 → ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) |
| 50 | breq12 | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ↔ 𝑠 𝑅 𝑟 ) ) | |
| 51 | 50 | biimpcd | ⊢ ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → 𝑠 𝑅 𝑟 ) ) |
| 52 | 49 51 | syl6 | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( 𝑏 ∈ 𝑎 → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → 𝑠 𝑅 𝑟 ) ) ) |
| 53 | 52 | com23 | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑏 ∈ 𝑎 → 𝑠 𝑅 𝑟 ) ) ) |
| 54 | 53 | adantrrl | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑏 ∈ 𝑎 → 𝑠 𝑅 𝑟 ) ) ) |
| 55 | 54 | imp | ⊢ ( ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) → ( 𝑏 ∈ 𝑎 → 𝑠 𝑅 𝑟 ) ) |
| 56 | fveq2 | ⊢ ( 𝑏 = 𝑎 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 57 | eqeq12 | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑎 ) ↔ 𝑠 = 𝑟 ) ) | |
| 58 | 56 57 | imbitrid | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑏 = 𝑎 → 𝑠 = 𝑟 ) ) |
| 59 | 58 | adantl | ⊢ ( ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) → ( 𝑏 = 𝑎 → 𝑠 = 𝑟 ) ) |
| 60 | eqid | ⊢ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } | |
| 61 | 1 2 60 | zorn2lem2 | ⊢ ( ( 𝑏 ∈ On ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( 𝑎 ∈ 𝑏 → ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 62 | 61 | adantlr | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( 𝑎 ∈ 𝑏 → ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) |
| 63 | breq12 | ⊢ ( ( ( 𝐹 ‘ 𝑎 ) = 𝑟 ∧ ( 𝐹 ‘ 𝑏 ) = 𝑠 ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ↔ 𝑟 𝑅 𝑠 ) ) | |
| 64 | 63 | ancoms | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ↔ 𝑟 𝑅 𝑠 ) ) |
| 65 | 64 | biimpcd | ⊢ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → 𝑟 𝑅 𝑠 ) ) |
| 66 | 62 65 | syl6 | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( 𝑎 ∈ 𝑏 → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → 𝑟 𝑅 𝑠 ) ) ) |
| 67 | 66 | com23 | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑎 ∈ 𝑏 → 𝑟 𝑅 𝑠 ) ) ) |
| 68 | 67 | adantrrr | ⊢ ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑎 ∈ 𝑏 → 𝑟 𝑅 𝑠 ) ) ) |
| 69 | 68 | imp | ⊢ ( ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) → ( 𝑎 ∈ 𝑏 → 𝑟 𝑅 𝑠 ) ) |
| 70 | 55 59 69 | 3orim123d | ⊢ ( ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) → ( ( 𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) |
| 71 | 46 70 | syl5 | ⊢ ( ( ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) ∧ ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) → ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) |
| 72 | 71 | exp31 | ⊢ ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) → ( ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) |
| 73 | 72 | com4r | ⊢ ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) → ( ( 𝑏 ∈ On ∧ 𝑎 ∈ On ) → ( ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) |
| 74 | 42 42 73 | syl6c | ⊢ ( 𝑥 ∈ On → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( ( 𝑤 We 𝐴 ∧ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) |
| 75 | 74 | exp4a | ⊢ ( 𝑥 ∈ On → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( 𝑤 We 𝐴 → ( ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) ) |
| 76 | 75 | com3r | ⊢ ( 𝑤 We 𝐴 → ( 𝑥 ∈ On → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) ) |
| 77 | 76 | imp | ⊢ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) |
| 78 | 77 | a2d | ⊢ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑏 ) 𝑔 𝑅 𝑧 } ≠ ∅ ∧ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑎 ) 𝑔 𝑅 𝑧 } ≠ ∅ ) ) → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) |
| 79 | 38 78 | syl5 | ⊢ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) ) |
| 80 | 79 | imp4b | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) |
| 81 | 80 | exlimdvv | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥 ) ∧ ( ( 𝐹 ‘ 𝑏 ) = 𝑠 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑟 ) ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) |
| 82 | 24 81 | syl5 | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( 𝑠 ∈ ( 𝐹 “ 𝑥 ) ∧ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ) → ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) |
| 83 | 82 | ralrimivv | ⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ∀ 𝑠 ∈ ( 𝐹 “ 𝑥 ) ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) |
| 84 | 7 83 | jca2 | ⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝑅 Po ( 𝐹 “ 𝑥 ) ∧ ∀ 𝑠 ∈ ( 𝐹 “ 𝑥 ) ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) ) |
| 85 | df-so | ⊢ ( 𝑅 Or ( 𝐹 “ 𝑥 ) ↔ ( 𝑅 Po ( 𝐹 “ 𝑥 ) ∧ ∀ 𝑠 ∈ ( 𝐹 “ 𝑥 ) ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑠 𝑅 𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟 𝑅 𝑠 ) ) ) | |
| 86 | 84 85 | imbitrrdi | ⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) |