This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zeo2 | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ↔ ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 2 | peano2cn | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 + 1 ) ∈ ℂ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 4 | 2cnd | ⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℂ ) | |
| 5 | 2ne0 | ⊢ 2 ≠ 0 | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℤ → 2 ≠ 0 ) |
| 7 | 3 4 6 | divcan2d | ⊢ ( 𝑁 ∈ ℤ → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) = ( 𝑁 + 1 ) ) |
| 8 | 1 4 6 | divcan2d | ⊢ ( 𝑁 ∈ ℤ → ( 2 · ( 𝑁 / 2 ) ) = 𝑁 ) |
| 9 | 8 | oveq1d | ⊢ ( 𝑁 ∈ ℤ → ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) = ( 𝑁 + 1 ) ) |
| 10 | 7 9 | eqtr4d | ⊢ ( 𝑁 ∈ ℤ → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) = ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) ) |
| 11 | zneo | ⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) ≠ ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) ) | |
| 12 | 11 | expcom | ⊢ ( ( 𝑁 / 2 ) ∈ ℤ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) ≠ ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) ) ) |
| 13 | 12 | necon2bd | ⊢ ( ( 𝑁 / 2 ) ∈ ℤ → ( ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) = ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) → ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 14 | 10 13 | syl5com | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ → ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 15 | zeo | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 16 | 15 | ord | ⊢ ( 𝑁 ∈ ℤ → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 17 | 16 | con1d | ⊢ ( 𝑁 ∈ ℤ → ( ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 18 | 14 17 | impbid | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ↔ ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |