This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri or axlttri . (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrlttri | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltnr | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 𝐵 ) → ¬ 𝐴 < 𝐴 ) |
| 3 | breq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 < 𝐴 ↔ 𝐴 < 𝐵 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 𝐵 ) → ( 𝐴 < 𝐴 ↔ 𝐴 < 𝐵 ) ) |
| 5 | 2 4 | mtbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 𝐵 ) → ¬ 𝐴 < 𝐵 ) |
| 6 | 5 | ex | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = 𝐵 → ¬ 𝐴 < 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 → ¬ 𝐴 < 𝐵 ) ) |
| 8 | xrltnsym | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 < 𝐴 → ¬ 𝐴 < 𝐵 ) ) | |
| 9 | 8 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < 𝐴 → ¬ 𝐴 < 𝐵 ) ) |
| 10 | 7 9 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ¬ 𝐴 < 𝐵 ) ) |
| 11 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 12 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 13 | axlttri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) | |
| 14 | 13 | biimprd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → 𝐴 < 𝐵 ) ) |
| 15 | 14 | con1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 16 | ltpnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → 𝐴 < +∞ ) |
| 18 | breq2 | ⊢ ( 𝐵 = +∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < +∞ ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < +∞ ) ) |
| 20 | 17 19 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → 𝐴 < 𝐵 ) |
| 21 | 20 | pm2.24d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 22 | mnflt | ⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → -∞ < 𝐴 ) |
| 24 | breq1 | ⊢ ( 𝐵 = -∞ → ( 𝐵 < 𝐴 ↔ -∞ < 𝐴 ) ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐵 < 𝐴 ↔ -∞ < 𝐴 ) ) |
| 26 | 23 25 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → 𝐵 < 𝐴 ) |
| 27 | 26 | olcd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 28 | 27 | a1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 29 | 15 21 28 | 3jaodan | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 30 | ltpnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ ) → 𝐵 < +∞ ) |
| 32 | breq2 | ⊢ ( 𝐴 = +∞ → ( 𝐵 < 𝐴 ↔ 𝐵 < +∞ ) ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ 𝐵 < +∞ ) ) |
| 34 | 31 33 | mpbird | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ ) → 𝐵 < 𝐴 ) |
| 35 | 34 | olcd | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 36 | 35 | a1d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 37 | eqtr3 | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 = +∞ ) → 𝐴 = 𝐵 ) | |
| 38 | 37 | orcd | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 = +∞ ) → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 39 | 38 | a1d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 = +∞ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 40 | mnfltpnf | ⊢ -∞ < +∞ | |
| 41 | breq12 | ⊢ ( ( 𝐵 = -∞ ∧ 𝐴 = +∞ ) → ( 𝐵 < 𝐴 ↔ -∞ < +∞ ) ) | |
| 42 | 40 41 | mpbiri | ⊢ ( ( 𝐵 = -∞ ∧ 𝐴 = +∞ ) → 𝐵 < 𝐴 ) |
| 43 | 42 | ancoms | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 = -∞ ) → 𝐵 < 𝐴 ) |
| 44 | 43 | olcd | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 = -∞ ) → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 45 | 44 | a1d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 = -∞ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 46 | 36 39 45 | 3jaodan | ⊢ ( ( 𝐴 = +∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 47 | mnflt | ⊢ ( 𝐵 ∈ ℝ → -∞ < 𝐵 ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → -∞ < 𝐵 ) |
| 49 | breq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 < 𝐵 ↔ -∞ < 𝐵 ) ) | |
| 50 | 49 | adantr | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ -∞ < 𝐵 ) ) |
| 51 | 48 50 | mpbird | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → 𝐴 < 𝐵 ) |
| 52 | 51 | pm2.24d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 53 | breq12 | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 ↔ -∞ < +∞ ) ) | |
| 54 | 40 53 | mpbiri | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → 𝐴 < 𝐵 ) |
| 55 | 54 | pm2.24d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 56 | eqtr3 | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → 𝐴 = 𝐵 ) | |
| 57 | 56 | orcd | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) |
| 58 | 57 | a1d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 59 | 52 55 58 | 3jaodan | ⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 60 | 29 46 59 | 3jaoian | ⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 61 | 11 12 60 | syl2anb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ¬ 𝐴 < 𝐵 → ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 62 | 10 61 | impbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ↔ ¬ 𝐴 < 𝐵 ) ) |
| 63 | 62 | con2bid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |