This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mnfltpnf | ⊢ -∞ < +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ -∞ = -∞ | |
| 2 | eqid | ⊢ +∞ = +∞ | |
| 3 | olc | ⊢ ( ( -∞ = -∞ ∧ +∞ = +∞ ) → ( ( ( -∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ -∞ <ℝ +∞ ) ∨ ( -∞ = -∞ ∧ +∞ = +∞ ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( ( -∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ -∞ <ℝ +∞ ) ∨ ( -∞ = -∞ ∧ +∞ = +∞ ) ) |
| 5 | 4 | orci | ⊢ ( ( ( ( -∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ -∞ <ℝ +∞ ) ∨ ( -∞ = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ +∞ = +∞ ) ∨ ( -∞ = -∞ ∧ +∞ ∈ ℝ ) ) ) |
| 6 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 7 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 8 | ltxr | ⊢ ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ < +∞ ↔ ( ( ( ( -∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ -∞ <ℝ +∞ ) ∨ ( -∞ = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ +∞ = +∞ ) ∨ ( -∞ = -∞ ∧ +∞ ∈ ℝ ) ) ) ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( -∞ < +∞ ↔ ( ( ( ( -∞ ∈ ℝ ∧ +∞ ∈ ℝ ) ∧ -∞ <ℝ +∞ ) ∨ ( -∞ = -∞ ∧ +∞ = +∞ ) ) ∨ ( ( -∞ ∈ ℝ ∧ +∞ = +∞ ) ∨ ( -∞ = -∞ ∧ +∞ ∈ ℝ ) ) ) ) |
| 10 | 5 9 | mpbir | ⊢ -∞ < +∞ |