This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrltnsym | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 3 | ltnsym | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) | |
| 4 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 5 | pnfnlt | ⊢ ( 𝐴 ∈ ℝ* → ¬ +∞ < 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ¬ +∞ < 𝐴 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ +∞ < 𝐴 ) |
| 8 | breq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 < 𝐴 ↔ +∞ < 𝐴 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐵 < 𝐴 ↔ +∞ < 𝐴 ) ) |
| 10 | 7 9 | mtbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 𝐴 ) |
| 11 | 10 | a1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 12 | nltmnf | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) | |
| 13 | 4 12 | syl | ⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < -∞ ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
| 15 | breq2 | ⊢ ( 𝐵 = -∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 17 | 14 16 | mtbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < 𝐵 ) |
| 18 | 17 | pm2.21d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 19 | 3 11 18 | 3jaodan | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 20 | pnfnlt | ⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
| 22 | breq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 24 | 21 23 | mtbird | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ 𝐴 < 𝐵 ) |
| 25 | 24 | pm2.21d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 26 | 2 25 | sylan2br | ⊢ ( ( 𝐴 = +∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 27 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 28 | nltmnf | ⊢ ( 𝐵 ∈ ℝ* → ¬ 𝐵 < -∞ ) | |
| 29 | 27 28 | syl | ⊢ ( 𝐵 ∈ ℝ → ¬ 𝐵 < -∞ ) |
| 30 | 29 | adantl | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ¬ 𝐵 < -∞ ) |
| 31 | breq2 | ⊢ ( 𝐴 = -∞ → ( 𝐵 < 𝐴 ↔ 𝐵 < -∞ ) ) | |
| 32 | 31 | adantr | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ 𝐵 < -∞ ) ) |
| 33 | 30 32 | mtbird | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ¬ 𝐵 < 𝐴 ) |
| 34 | 33 | a1d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 35 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 36 | pnfnlt | ⊢ ( -∞ ∈ ℝ* → ¬ +∞ < -∞ ) | |
| 37 | 35 36 | ax-mp | ⊢ ¬ +∞ < -∞ |
| 38 | breq12 | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 = -∞ ) → ( 𝐵 < 𝐴 ↔ +∞ < -∞ ) ) | |
| 39 | 37 38 | mtbiri | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 = -∞ ) → ¬ 𝐵 < 𝐴 ) |
| 40 | 39 | ancoms | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 𝐴 ) |
| 41 | 40 | a1d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 42 | xrltnr | ⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) | |
| 43 | 35 42 | ax-mp | ⊢ ¬ -∞ < -∞ |
| 44 | breq12 | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ -∞ < -∞ ) ) | |
| 45 | 43 44 | mtbiri | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < 𝐵 ) |
| 46 | 45 | pm2.21d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 47 | 34 41 46 | 3jaodan | ⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 48 | 19 26 47 | 3jaoian | ⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |
| 49 | 1 2 48 | syl2anb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ¬ 𝐵 < 𝐴 ) ) |