This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri or axlttri . (Contributed by NM, 14-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrlttri | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltnr | |- ( A e. RR* -> -. A < A ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR* /\ A = B ) -> -. A < A ) |
| 3 | breq2 | |- ( A = B -> ( A < A <-> A < B ) ) |
|
| 4 | 3 | adantl | |- ( ( A e. RR* /\ A = B ) -> ( A < A <-> A < B ) ) |
| 5 | 2 4 | mtbid | |- ( ( A e. RR* /\ A = B ) -> -. A < B ) |
| 6 | 5 | ex | |- ( A e. RR* -> ( A = B -> -. A < B ) ) |
| 7 | 6 | adantr | |- ( ( A e. RR* /\ B e. RR* ) -> ( A = B -> -. A < B ) ) |
| 8 | xrltnsym | |- ( ( B e. RR* /\ A e. RR* ) -> ( B < A -> -. A < B ) ) |
|
| 9 | 8 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> ( B < A -> -. A < B ) ) |
| 10 | 7 9 | jaod | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A = B \/ B < A ) -> -. A < B ) ) |
| 11 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 12 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 13 | axlttri | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
|
| 14 | 13 | biimprd | |- ( ( A e. RR /\ B e. RR ) -> ( -. ( A = B \/ B < A ) -> A < B ) ) |
| 15 | 14 | con1d | |- ( ( A e. RR /\ B e. RR ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 16 | ltpnf | |- ( A e. RR -> A < +oo ) |
|
| 17 | 16 | adantr | |- ( ( A e. RR /\ B = +oo ) -> A < +oo ) |
| 18 | breq2 | |- ( B = +oo -> ( A < B <-> A < +oo ) ) |
|
| 19 | 18 | adantl | |- ( ( A e. RR /\ B = +oo ) -> ( A < B <-> A < +oo ) ) |
| 20 | 17 19 | mpbird | |- ( ( A e. RR /\ B = +oo ) -> A < B ) |
| 21 | 20 | pm2.24d | |- ( ( A e. RR /\ B = +oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 22 | mnflt | |- ( A e. RR -> -oo < A ) |
|
| 23 | 22 | adantr | |- ( ( A e. RR /\ B = -oo ) -> -oo < A ) |
| 24 | breq1 | |- ( B = -oo -> ( B < A <-> -oo < A ) ) |
|
| 25 | 24 | adantl | |- ( ( A e. RR /\ B = -oo ) -> ( B < A <-> -oo < A ) ) |
| 26 | 23 25 | mpbird | |- ( ( A e. RR /\ B = -oo ) -> B < A ) |
| 27 | 26 | olcd | |- ( ( A e. RR /\ B = -oo ) -> ( A = B \/ B < A ) ) |
| 28 | 27 | a1d | |- ( ( A e. RR /\ B = -oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 29 | 15 21 28 | 3jaodan | |- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 30 | ltpnf | |- ( B e. RR -> B < +oo ) |
|
| 31 | 30 | adantl | |- ( ( A = +oo /\ B e. RR ) -> B < +oo ) |
| 32 | breq2 | |- ( A = +oo -> ( B < A <-> B < +oo ) ) |
|
| 33 | 32 | adantr | |- ( ( A = +oo /\ B e. RR ) -> ( B < A <-> B < +oo ) ) |
| 34 | 31 33 | mpbird | |- ( ( A = +oo /\ B e. RR ) -> B < A ) |
| 35 | 34 | olcd | |- ( ( A = +oo /\ B e. RR ) -> ( A = B \/ B < A ) ) |
| 36 | 35 | a1d | |- ( ( A = +oo /\ B e. RR ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 37 | eqtr3 | |- ( ( A = +oo /\ B = +oo ) -> A = B ) |
|
| 38 | 37 | orcd | |- ( ( A = +oo /\ B = +oo ) -> ( A = B \/ B < A ) ) |
| 39 | 38 | a1d | |- ( ( A = +oo /\ B = +oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 40 | mnfltpnf | |- -oo < +oo |
|
| 41 | breq12 | |- ( ( B = -oo /\ A = +oo ) -> ( B < A <-> -oo < +oo ) ) |
|
| 42 | 40 41 | mpbiri | |- ( ( B = -oo /\ A = +oo ) -> B < A ) |
| 43 | 42 | ancoms | |- ( ( A = +oo /\ B = -oo ) -> B < A ) |
| 44 | 43 | olcd | |- ( ( A = +oo /\ B = -oo ) -> ( A = B \/ B < A ) ) |
| 45 | 44 | a1d | |- ( ( A = +oo /\ B = -oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 46 | 36 39 45 | 3jaodan | |- ( ( A = +oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 47 | mnflt | |- ( B e. RR -> -oo < B ) |
|
| 48 | 47 | adantl | |- ( ( A = -oo /\ B e. RR ) -> -oo < B ) |
| 49 | breq1 | |- ( A = -oo -> ( A < B <-> -oo < B ) ) |
|
| 50 | 49 | adantr | |- ( ( A = -oo /\ B e. RR ) -> ( A < B <-> -oo < B ) ) |
| 51 | 48 50 | mpbird | |- ( ( A = -oo /\ B e. RR ) -> A < B ) |
| 52 | 51 | pm2.24d | |- ( ( A = -oo /\ B e. RR ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 53 | breq12 | |- ( ( A = -oo /\ B = +oo ) -> ( A < B <-> -oo < +oo ) ) |
|
| 54 | 40 53 | mpbiri | |- ( ( A = -oo /\ B = +oo ) -> A < B ) |
| 55 | 54 | pm2.24d | |- ( ( A = -oo /\ B = +oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 56 | eqtr3 | |- ( ( A = -oo /\ B = -oo ) -> A = B ) |
|
| 57 | 56 | orcd | |- ( ( A = -oo /\ B = -oo ) -> ( A = B \/ B < A ) ) |
| 58 | 57 | a1d | |- ( ( A = -oo /\ B = -oo ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 59 | 52 55 58 | 3jaodan | |- ( ( A = -oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 60 | 29 46 59 | 3jaoian | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 61 | 11 12 60 | syl2anb | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. A < B -> ( A = B \/ B < A ) ) ) |
| 62 | 10 61 | impbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A = B \/ B < A ) <-> -. A < B ) ) |
| 63 | 62 | con2bid | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |