This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wallispi.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| wallispi.2 | ⊢ 𝑊 = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) | ||
| Assertion | wallispi | ⊢ 𝑊 ⇝ ( π / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispi.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| 2 | wallispi.2 | ⊢ 𝑊 = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) | |
| 3 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 4 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 5 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( 2 · 𝑛 ) ) / ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( 2 · 𝑛 ) ) / ( ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) | |
| 7 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) | |
| 8 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · 𝑛 ) ) ) | |
| 9 | 1 5 6 7 8 | wallispilem5 | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ⇝ 1 |
| 10 | 9 | a1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ⇝ 1 ) |
| 11 | 2cnd | ⊢ ( ⊤ → 2 ∈ ℂ ) | |
| 12 | picn | ⊢ π ∈ ℂ | |
| 13 | 12 | a1i | ⊢ ( ⊤ → π ∈ ℂ ) |
| 14 | pire | ⊢ π ∈ ℝ | |
| 15 | pipos | ⊢ 0 < π | |
| 16 | 14 15 | gt0ne0ii | ⊢ π ≠ 0 |
| 17 | 16 | a1i | ⊢ ( ⊤ → π ≠ 0 ) |
| 18 | 11 13 17 | divcld | ⊢ ( ⊤ → ( 2 / π ) ∈ ℂ ) |
| 19 | nnex | ⊢ ℕ ∈ V | |
| 20 | 19 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ∈ V |
| 21 | 20 | a1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ∈ V ) |
| 22 | 12 | a1i | ⊢ ( 𝑛 ∈ ℕ → π ∈ ℂ ) |
| 23 | 22 | halfcld | ⊢ ( 𝑛 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
| 24 | elnnuz | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 25 | 24 | biimpi | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( 2 · 𝑘 ) = ( 2 · 𝑗 ) ) | |
| 27 | 26 | oveq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 28 | 26 27 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 29 | 26 | oveq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑗 ) + 1 ) ) |
| 30 | 26 29 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 31 | 28 30 | oveq12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ) |
| 32 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 𝑗 ∈ ℕ ) | |
| 33 | 2cnd | ⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℂ ) | |
| 34 | nncn | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) | |
| 35 | 33 34 | mulcld | ⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℂ ) |
| 36 | 1cnd | ⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) | |
| 37 | 35 36 | subcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ∈ ℂ ) |
| 38 | 1red | ⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ ) | |
| 39 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 40 | 38 38 | remulcld | ⊢ ( 𝑗 ∈ ℕ → ( 1 · 1 ) ∈ ℝ ) |
| 41 | 2re | ⊢ 2 ∈ ℝ | |
| 42 | 41 | a1i | ⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℝ ) |
| 43 | 42 38 | remulcld | ⊢ ( 𝑗 ∈ ℕ → ( 2 · 1 ) ∈ ℝ ) |
| 44 | nnre | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) | |
| 45 | 42 44 | remulcld | ⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℝ ) |
| 46 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 47 | 46 | a1i | ⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ+ ) |
| 48 | 1lt2 | ⊢ 1 < 2 | |
| 49 | 48 | a1i | ⊢ ( 𝑗 ∈ ℕ → 1 < 2 ) |
| 50 | 38 42 47 49 | ltmul1dd | ⊢ ( 𝑗 ∈ ℕ → ( 1 · 1 ) < ( 2 · 1 ) ) |
| 51 | 0le2 | ⊢ 0 ≤ 2 | |
| 52 | 51 | a1i | ⊢ ( 𝑗 ∈ ℕ → 0 ≤ 2 ) |
| 53 | nnge1 | ⊢ ( 𝑗 ∈ ℕ → 1 ≤ 𝑗 ) | |
| 54 | 38 44 42 52 53 | lemul2ad | ⊢ ( 𝑗 ∈ ℕ → ( 2 · 1 ) ≤ ( 2 · 𝑗 ) ) |
| 55 | 40 43 45 50 54 | ltletrd | ⊢ ( 𝑗 ∈ ℕ → ( 1 · 1 ) < ( 2 · 𝑗 ) ) |
| 56 | 39 55 | eqbrtrrid | ⊢ ( 𝑗 ∈ ℕ → 1 < ( 2 · 𝑗 ) ) |
| 57 | 38 56 | gtned | ⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ≠ 1 ) |
| 58 | 35 36 57 | subne0d | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ≠ 0 ) |
| 59 | 35 37 58 | divcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
| 60 | 35 36 | addcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) + 1 ) ∈ ℂ ) |
| 61 | 0red | ⊢ ( 𝑗 ∈ ℕ → 0 ∈ ℝ ) | |
| 62 | 45 38 | readdcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) + 1 ) ∈ ℝ ) |
| 63 | 47 | rpgt0d | ⊢ ( 𝑗 ∈ ℕ → 0 < 1 ) |
| 64 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 65 | 64 | a1i | ⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℝ+ ) |
| 66 | nnrp | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ+ ) | |
| 67 | 65 66 | rpmulcld | ⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℝ+ ) |
| 68 | 38 67 | ltaddrp2d | ⊢ ( 𝑗 ∈ ℕ → 1 < ( ( 2 · 𝑗 ) + 1 ) ) |
| 69 | 61 38 62 63 68 | lttrd | ⊢ ( 𝑗 ∈ ℕ → 0 < ( ( 2 · 𝑗 ) + 1 ) ) |
| 70 | 61 69 | gtned | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) + 1 ) ≠ 0 ) |
| 71 | 35 60 70 | divcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℂ ) |
| 72 | 59 71 | mulcld | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℂ ) |
| 73 | 32 72 | syl | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℂ ) |
| 74 | 1 31 32 73 | fvmptd3 | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 𝐹 ‘ 𝑗 ) = ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ) |
| 75 | 64 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℝ+ ) |
| 76 | 32 | nnrpd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 𝑗 ∈ ℝ+ ) |
| 77 | 75 76 | rpmulcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑗 ) ∈ ℝ+ ) |
| 78 | 45 38 | resubcld | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ ) |
| 79 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 80 | 38 45 38 56 | ltsub1dd | ⊢ ( 𝑗 ∈ ℕ → ( 1 − 1 ) < ( ( 2 · 𝑗 ) − 1 ) ) |
| 81 | 79 80 | eqbrtrrid | ⊢ ( 𝑗 ∈ ℕ → 0 < ( ( 2 · 𝑗 ) − 1 ) ) |
| 82 | 78 81 | elrpd | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ+ ) |
| 83 | 32 82 | syl | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ+ ) |
| 84 | 77 83 | rpdivcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℝ+ ) |
| 85 | 41 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 2 ∈ ℝ ) |
| 86 | 32 | nnred | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 𝑗 ∈ ℝ ) |
| 87 | 85 86 | remulcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 2 · 𝑗 ) ∈ ℝ ) |
| 88 | 75 | rpge0d | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 0 ≤ 2 ) |
| 89 | 76 | rpge0d | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 0 ≤ 𝑗 ) |
| 90 | 85 86 88 89 | mulge0d | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → 0 ≤ ( 2 · 𝑗 ) ) |
| 91 | 87 90 | ge0p1rpd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℝ+ ) |
| 92 | 77 91 | rpdivcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℝ+ ) |
| 93 | 84 92 | rpmulcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) − 1 ) ) · ( ( 2 · 𝑗 ) / ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℝ+ ) |
| 94 | 74 93 | eqeltrd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑛 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ+ ) |
| 95 | 94 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ+ ) |
| 96 | rpmulcl | ⊢ ( ( 𝑗 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) → ( 𝑗 · 𝑤 ) ∈ ℝ+ ) | |
| 97 | 96 | adantl | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑗 ∈ ℝ+ ∧ 𝑤 ∈ ℝ+ ) ) → ( 𝑗 · 𝑤 ) ∈ ℝ+ ) |
| 98 | 25 95 97 | seqcl | ⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℝ+ ) |
| 99 | 98 | rpcnd | ⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 100 | 98 | rpne0d | ⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ≠ 0 ) |
| 101 | 99 100 | reccld | ⊢ ( 𝑛 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ∈ ℂ ) |
| 102 | 23 101 | mulcld | ⊢ ( 𝑛 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 103 | 7 102 | fmpti | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℂ |
| 104 | 103 | a1i | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) : ℕ ⟶ ℂ ) |
| 105 | 104 | ffvelcdmda | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 106 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) | |
| 107 | 106 | eleq1d | ⊢ ( 𝑛 = 𝑗 → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ∈ ℝ+ ↔ ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℝ+ ) ) |
| 108 | 107 98 | vtoclga | ⊢ ( 𝑗 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℝ+ ) |
| 109 | 108 | rpcnd | ⊢ ( 𝑗 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 110 | 108 | rpne0d | ⊢ ( 𝑗 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ≠ 0 ) |
| 111 | 36 109 110 | divrecd | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) = ( 1 · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 112 | 12 | a1i | ⊢ ( 𝑗 ∈ ℕ → π ∈ ℂ ) |
| 113 | 65 | rpne0d | ⊢ ( 𝑗 ∈ ℕ → 2 ≠ 0 ) |
| 114 | 16 | a1i | ⊢ ( 𝑗 ∈ ℕ → π ≠ 0 ) |
| 115 | 33 112 113 114 | divcan6d | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 / π ) · ( π / 2 ) ) = 1 ) |
| 116 | 115 | eqcomd | ⊢ ( 𝑗 ∈ ℕ → 1 = ( ( 2 / π ) · ( π / 2 ) ) ) |
| 117 | 116 | oveq1d | ⊢ ( 𝑗 ∈ ℕ → ( 1 · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) = ( ( ( 2 / π ) · ( π / 2 ) ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 118 | 33 112 114 | divcld | ⊢ ( 𝑗 ∈ ℕ → ( 2 / π ) ∈ ℂ ) |
| 119 | 112 | halfcld | ⊢ ( 𝑗 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
| 120 | 109 110 | reccld | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ∈ ℂ ) |
| 121 | 118 119 120 | mulassd | ⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 / π ) · ( π / 2 ) ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) = ( ( 2 / π ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) ) |
| 122 | 111 117 121 | 3eqtrd | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) = ( ( 2 / π ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) ) |
| 123 | eqidd | ⊢ ( 𝑗 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) | |
| 124 | 106 | oveq2d | ⊢ ( 𝑛 = 𝑗 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 125 | 124 | adantl | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 126 | id | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) | |
| 127 | 108 | rpreccld | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ∈ ℝ+ ) |
| 128 | 123 125 126 127 | fvmptd | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 129 | eqidd | ⊢ ( 𝑗 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) | |
| 130 | 125 | oveq2d | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 131 | 119 120 | mulcld | ⊢ ( 𝑗 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 132 | 129 130 126 131 | fvmptd | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 133 | 132 | oveq2d | ⊢ ( 𝑗 ∈ ℕ → ( ( 2 / π ) · ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) = ( ( 2 / π ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) ) |
| 134 | 122 128 133 | 3eqtr4d | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 2 / π ) · ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
| 135 | 134 | adantl | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( 2 / π ) · ( ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
| 136 | 3 4 10 18 21 105 135 | climmulc2 | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ⇝ ( ( 2 / π ) · 1 ) ) |
| 137 | 2cn | ⊢ 2 ∈ ℂ | |
| 138 | 137 12 16 | divcli | ⊢ ( 2 / π ) ∈ ℂ |
| 139 | 138 | mulridi | ⊢ ( ( 2 / π ) · 1 ) = ( 2 / π ) |
| 140 | 136 139 | breqtrdi | ⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ⇝ ( 2 / π ) ) |
| 141 | 2ne0 | ⊢ 2 ≠ 0 | |
| 142 | 137 12 141 16 | divne0i | ⊢ ( 2 / π ) ≠ 0 |
| 143 | 142 | a1i | ⊢ ( ⊤ → ( 2 / π ) ≠ 0 ) |
| 144 | 128 120 | eqeltrd | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 145 | 109 110 | recne0d | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ≠ 0 ) |
| 146 | 128 145 | eqnetrd | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ≠ 0 ) |
| 147 | nelsn | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ≠ 0 → ¬ ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ { 0 } ) | |
| 148 | 146 147 | syl | ⊢ ( 𝑗 ∈ ℕ → ¬ ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ { 0 } ) |
| 149 | 144 148 | eldifd | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 150 | 149 | adantl | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 151 | 109 110 | recrecd | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) |
| 152 | 123 125 126 120 | fvmptd | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) |
| 153 | 152 | oveq2d | ⊢ ( 𝑗 ∈ ℕ → ( 1 / ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ) = ( 1 / ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 154 | 106 2 98 | fvmpt3 | ⊢ ( 𝑗 ∈ ℕ → ( 𝑊 ‘ 𝑗 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑗 ) ) |
| 155 | 151 153 154 | 3eqtr4rd | ⊢ ( 𝑗 ∈ ℕ → ( 𝑊 ‘ 𝑗 ) = ( 1 / ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ) ) |
| 156 | 155 | adantl | ⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝑊 ‘ 𝑗 ) = ( 1 / ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ‘ 𝑗 ) ) ) |
| 157 | 19 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ∈ V |
| 158 | 2 157 | eqeltri | ⊢ 𝑊 ∈ V |
| 159 | 158 | a1i | ⊢ ( ⊤ → 𝑊 ∈ V ) |
| 160 | 3 4 140 143 150 156 159 | climrec | ⊢ ( ⊤ → 𝑊 ⇝ ( 1 / ( 2 / π ) ) ) |
| 161 | 160 | mptru | ⊢ 𝑊 ⇝ ( 1 / ( 2 / π ) ) |
| 162 | recdiv | ⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( 1 / ( 2 / π ) ) = ( π / 2 ) ) | |
| 163 | 137 141 12 16 162 | mp4an | ⊢ ( 1 / ( 2 / π ) ) = ( π / 2 ) |
| 164 | 161 163 | breqtri | ⊢ 𝑊 ⇝ ( π / 2 ) |