This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: I is monotone: increasing the exponent, the integral decreases. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wallispilem1.1 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| wallispilem1.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | wallispilem1 | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑁 + 1 ) ) ≤ ( 𝐼 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem1.1 | ⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) | |
| 2 | wallispilem1.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 5 | pire | ⊢ π ∈ ℝ | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → π ∈ ℝ ) |
| 7 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 9 | iblioosinexp | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝑁 + 1 ) ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) ) ∈ 𝐿1 ) | |
| 10 | 4 6 8 9 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) ) ∈ 𝐿1 ) |
| 11 | iblioosinexp | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) | |
| 12 | 4 6 2 11 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) ∈ 𝐿1 ) |
| 13 | elioore | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℝ ) | |
| 14 | 13 | resincld | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( sin ‘ 𝑥 ) ∈ ℝ ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ∈ ℝ ) |
| 16 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 17 | 15 16 | reexpcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑁 ∈ ℕ0 ) |
| 19 | 15 18 | reexpcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ∈ ℝ ) |
| 20 | 2 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 21 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 23 | peano2uz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 26 | 14 3 | jctil | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 0 ∈ ℝ ∧ ( sin ‘ 𝑥 ) ∈ ℝ ) ) |
| 27 | sinq12gt0 | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 < ( sin ‘ 𝑥 ) ) | |
| 28 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( sin ‘ 𝑥 ) ∈ ℝ ) → ( 0 < ( sin ‘ 𝑥 ) → 0 ≤ ( sin ‘ 𝑥 ) ) ) | |
| 29 | 26 27 28 | sylc | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 ≤ ( sin ‘ 𝑥 ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 0 ≤ ( sin ‘ 𝑥 ) ) |
| 31 | sinbnd | ⊢ ( 𝑥 ∈ ℝ → ( - 1 ≤ ( sin ‘ 𝑥 ) ∧ ( sin ‘ 𝑥 ) ≤ 1 ) ) | |
| 32 | 13 31 | syl | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( - 1 ≤ ( sin ‘ 𝑥 ) ∧ ( sin ‘ 𝑥 ) ≤ 1 ) ) |
| 33 | 32 | simprd | ⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( sin ‘ 𝑥 ) ≤ 1 ) |
| 34 | 33 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ≤ 1 ) |
| 35 | 15 18 25 30 34 | leexp2rd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) ≤ ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 36 | 10 12 17 19 35 | itgle | ⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) d 𝑥 ≤ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) d 𝑥 ) |
| 37 | oveq2 | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝑛 = ( 𝑁 + 1 ) ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) ) |
| 39 | 38 | itgeq2dv | ⊢ ( 𝑛 = ( 𝑁 + 1 ) → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) d 𝑥 ) |
| 40 | itgex | ⊢ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) d 𝑥 ∈ V | |
| 41 | 39 1 40 | fvmpt | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝐼 ‘ ( 𝑁 + 1 ) ) = ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) d 𝑥 ) |
| 42 | 8 41 | syl | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑁 + 1 ) ) = ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ ( 𝑁 + 1 ) ) d 𝑥 ) |
| 43 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) | |
| 44 | 43 | adantr | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) ) |
| 45 | 44 | itgeq2dv | ⊢ ( 𝑛 = 𝑁 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) d 𝑥 ) |
| 46 | itgex | ⊢ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) d 𝑥 ∈ V | |
| 47 | 45 1 46 | fvmpt | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ‘ 𝑁 ) = ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) d 𝑥 ) |
| 48 | 2 47 | syl | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑁 ) = ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑁 ) d 𝑥 ) |
| 49 | 36 42 48 | 3brtr4d | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑁 + 1 ) ) ≤ ( 𝐼 ‘ 𝑁 ) ) |