This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence H converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wallispilem5.1 | |- F = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) |
|
| wallispilem5.2 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
||
| wallispilem5.3 | |- G = ( n e. NN |-> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) ) |
||
| wallispilem5.4 | |- H = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) |
||
| wallispilem5.5 | |- L = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) |
||
| Assertion | wallispilem5 | |- H ~~> 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispilem5.1 | |- F = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) |
|
| 2 | wallispilem5.2 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| 3 | wallispilem5.3 | |- G = ( n e. NN |-> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 4 | wallispilem5.4 | |- H = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) |
|
| 5 | wallispilem5.5 | |- L = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) |
|
| 6 | 1 2 3 4 | wallispilem4 | |- G = H |
| 7 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 8 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 9 | 2cnd | |- ( T. -> 2 e. CC ) |
|
| 10 | 2ne0 | |- 2 =/= 0 |
|
| 11 | 10 | a1i | |- ( T. -> 2 =/= 0 ) |
| 12 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 13 | 5 9 11 12 | clim1fr1 | |- ( T. -> L ~~> 1 ) |
| 14 | nnex | |- NN e. _V |
|
| 15 | 14 | mptex | |- ( n e. NN |-> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) ) e. _V |
| 16 | 3 15 | eqeltri | |- G e. _V |
| 17 | 16 | a1i | |- ( T. -> G e. _V ) |
| 18 | 2nn0 | |- 2 e. NN0 |
|
| 19 | 18 | a1i | |- ( n e. NN -> 2 e. NN0 ) |
| 20 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 21 | 19 20 | nn0mulcld | |- ( n e. NN -> ( 2 x. n ) e. NN0 ) |
| 22 | 1nn0 | |- 1 e. NN0 |
|
| 23 | 22 | a1i | |- ( n e. NN -> 1 e. NN0 ) |
| 24 | 21 23 | nn0addcld | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. NN0 ) |
| 25 | 24 | nn0red | |- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. RR ) |
| 26 | 21 | nn0red | |- ( n e. NN -> ( 2 x. n ) e. RR ) |
| 27 | 2cnd | |- ( n e. NN -> 2 e. CC ) |
|
| 28 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 29 | 10 | a1i | |- ( n e. NN -> 2 =/= 0 ) |
| 30 | nnne0 | |- ( n e. NN -> n =/= 0 ) |
|
| 31 | 27 28 29 30 | mulne0d | |- ( n e. NN -> ( 2 x. n ) =/= 0 ) |
| 32 | 25 26 31 | redivcld | |- ( n e. NN -> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) e. RR ) |
| 33 | 5 32 | fmpti | |- L : NN --> RR |
| 34 | 33 | a1i | |- ( T. -> L : NN --> RR ) |
| 35 | 34 | ffvelcdmda | |- ( ( T. /\ k e. NN ) -> ( L ` k ) e. RR ) |
| 36 | 2 | wallispilem3 | |- ( ( 2 x. n ) e. NN0 -> ( I ` ( 2 x. n ) ) e. RR+ ) |
| 37 | 21 36 | syl | |- ( n e. NN -> ( I ` ( 2 x. n ) ) e. RR+ ) |
| 38 | 37 | rpred | |- ( n e. NN -> ( I ` ( 2 x. n ) ) e. RR ) |
| 39 | 2 | wallispilem3 | |- ( ( ( 2 x. n ) + 1 ) e. NN0 -> ( I ` ( ( 2 x. n ) + 1 ) ) e. RR+ ) |
| 40 | 24 39 | syl | |- ( n e. NN -> ( I ` ( ( 2 x. n ) + 1 ) ) e. RR+ ) |
| 41 | 38 40 | rerpdivcld | |- ( n e. NN -> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) e. RR ) |
| 42 | 3 41 | fmpti | |- G : NN --> RR |
| 43 | 42 | a1i | |- ( T. -> G : NN --> RR ) |
| 44 | 43 | ffvelcdmda | |- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 45 | 18 | a1i | |- ( k e. NN -> 2 e. NN0 ) |
| 46 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 47 | 45 46 | nn0mulcld | |- ( k e. NN -> ( 2 x. k ) e. NN0 ) |
| 48 | 2 | wallispilem3 | |- ( ( 2 x. k ) e. NN0 -> ( I ` ( 2 x. k ) ) e. RR+ ) |
| 49 | 47 48 | syl | |- ( k e. NN -> ( I ` ( 2 x. k ) ) e. RR+ ) |
| 50 | 49 | rpred | |- ( k e. NN -> ( I ` ( 2 x. k ) ) e. RR ) |
| 51 | 2nn | |- 2 e. NN |
|
| 52 | 51 | a1i | |- ( k e. NN -> 2 e. NN ) |
| 53 | id | |- ( k e. NN -> k e. NN ) |
|
| 54 | 52 53 | nnmulcld | |- ( k e. NN -> ( 2 x. k ) e. NN ) |
| 55 | nnm1nn0 | |- ( ( 2 x. k ) e. NN -> ( ( 2 x. k ) - 1 ) e. NN0 ) |
|
| 56 | 54 55 | syl | |- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. NN0 ) |
| 57 | 2 | wallispilem3 | |- ( ( ( 2 x. k ) - 1 ) e. NN0 -> ( I ` ( ( 2 x. k ) - 1 ) ) e. RR+ ) |
| 58 | 56 57 | syl | |- ( k e. NN -> ( I ` ( ( 2 x. k ) - 1 ) ) e. RR+ ) |
| 59 | 58 | rpred | |- ( k e. NN -> ( I ` ( ( 2 x. k ) - 1 ) ) e. RR ) |
| 60 | 22 | a1i | |- ( k e. NN -> 1 e. NN0 ) |
| 61 | 47 60 | nn0addcld | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 62 | 2 | wallispilem3 | |- ( ( ( 2 x. k ) + 1 ) e. NN0 -> ( I ` ( ( 2 x. k ) + 1 ) ) e. RR+ ) |
| 63 | 61 62 | syl | |- ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) e. RR+ ) |
| 64 | 2cnd | |- ( k e. NN -> 2 e. CC ) |
|
| 65 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 66 | 64 65 | mulcld | |- ( k e. NN -> ( 2 x. k ) e. CC ) |
| 67 | 1cnd | |- ( k e. NN -> 1 e. CC ) |
|
| 68 | 66 67 | npcand | |- ( k e. NN -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) ) |
| 69 | 68 | fveq2d | |- ( k e. NN -> ( I ` ( ( ( 2 x. k ) - 1 ) + 1 ) ) = ( I ` ( 2 x. k ) ) ) |
| 70 | 2 56 | wallispilem1 | |- ( k e. NN -> ( I ` ( ( ( 2 x. k ) - 1 ) + 1 ) ) <_ ( I ` ( ( 2 x. k ) - 1 ) ) ) |
| 71 | 69 70 | eqbrtrrd | |- ( k e. NN -> ( I ` ( 2 x. k ) ) <_ ( I ` ( ( 2 x. k ) - 1 ) ) ) |
| 72 | 50 59 63 71 | lediv1dd | |- ( k e. NN -> ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) <_ ( ( I ` ( ( 2 x. k ) - 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 73 | 66 67 | addcld | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 74 | 10 | a1i | |- ( k e. NN -> 2 =/= 0 ) |
| 75 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 76 | 64 65 74 75 | mulne0d | |- ( k e. NN -> ( 2 x. k ) =/= 0 ) |
| 77 | 73 66 76 | divcld | |- ( k e. NN -> ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) e. CC ) |
| 78 | 63 | rpcnd | |- ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 79 | 63 | rpne0d | |- ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) =/= 0 ) |
| 80 | 77 78 79 | divcan4d | |- ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) |
| 81 | 2re | |- 2 e. RR |
|
| 82 | 81 | a1i | |- ( k e. NN -> 2 e. RR ) |
| 83 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 84 | 82 83 | remulcld | |- ( k e. NN -> ( 2 x. k ) e. RR ) |
| 85 | 1red | |- ( k e. NN -> 1 e. RR ) |
|
| 86 | 84 85 | readdcld | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. RR ) |
| 87 | 45 | nn0ge0d | |- ( k e. NN -> 0 <_ 2 ) |
| 88 | nnge1 | |- ( k e. NN -> 1 <_ k ) |
|
| 89 | 82 83 87 88 | lemulge11d | |- ( k e. NN -> 2 <_ ( 2 x. k ) ) |
| 90 | 84 | ltp1d | |- ( k e. NN -> ( 2 x. k ) < ( ( 2 x. k ) + 1 ) ) |
| 91 | 82 84 86 89 90 | lelttrd | |- ( k e. NN -> 2 < ( ( 2 x. k ) + 1 ) ) |
| 92 | 82 86 91 | ltled | |- ( k e. NN -> 2 <_ ( ( 2 x. k ) + 1 ) ) |
| 93 | 45 | nn0zd | |- ( k e. NN -> 2 e. ZZ ) |
| 94 | 61 | nn0zd | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. ZZ ) |
| 95 | eluz | |- ( ( 2 e. ZZ /\ ( ( 2 x. k ) + 1 ) e. ZZ ) -> ( ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( ( 2 x. k ) + 1 ) ) ) |
|
| 96 | 93 94 95 | syl2anc | |- ( k e. NN -> ( ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( ( 2 x. k ) + 1 ) ) ) |
| 97 | 92 96 | mpbird | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 2 ) ) |
| 98 | 2 97 | itgsinexp | |- ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) = ( ( ( ( ( 2 x. k ) + 1 ) - 1 ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( ( 2 x. k ) + 1 ) - 2 ) ) ) ) |
| 99 | 66 67 | pncand | |- ( k e. NN -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) |
| 100 | 99 | oveq1d | |- ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) - 1 ) / ( ( 2 x. k ) + 1 ) ) = ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) |
| 101 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 102 | 101 | a1i | |- ( k e. NN -> 1 = ( 2 - 1 ) ) |
| 103 | 102 | oveq2d | |- ( k e. NN -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. k ) - ( 2 - 1 ) ) ) |
| 104 | 66 64 67 | subsub3d | |- ( k e. NN -> ( ( 2 x. k ) - ( 2 - 1 ) ) = ( ( ( 2 x. k ) + 1 ) - 2 ) ) |
| 105 | 103 104 | eqtr2d | |- ( k e. NN -> ( ( ( 2 x. k ) + 1 ) - 2 ) = ( ( 2 x. k ) - 1 ) ) |
| 106 | 105 | fveq2d | |- ( k e. NN -> ( I ` ( ( ( 2 x. k ) + 1 ) - 2 ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) |
| 107 | 100 106 | oveq12d | |- ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) - 1 ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( ( 2 x. k ) + 1 ) - 2 ) ) ) = ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) |
| 108 | 98 107 | eqtrd | |- ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) = ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) |
| 109 | 108 | oveq2d | |- ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) ) |
| 110 | 54 | peano2nnd | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 111 | 110 | nnne0d | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) =/= 0 ) |
| 112 | 66 73 111 | divcld | |- ( k e. NN -> ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 113 | 58 | rpcnd | |- ( k e. NN -> ( I ` ( ( 2 x. k ) - 1 ) ) e. CC ) |
| 114 | 77 112 113 | mulassd | |- ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) ) |
| 115 | 73 66 111 76 | divcan6d | |- ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) = 1 ) |
| 116 | 115 | oveq1d | |- ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( 1 x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) |
| 117 | 113 | mullidd | |- ( k e. NN -> ( 1 x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) |
| 118 | 116 117 | eqtrd | |- ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) |
| 119 | 109 114 118 | 3eqtr2d | |- ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) |
| 120 | 119 | oveq1d | |- ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( ( I ` ( ( 2 x. k ) - 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 121 | 80 120 | eqtr3d | |- ( k e. NN -> ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) = ( ( I ` ( ( 2 x. k ) - 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 122 | 72 121 | breqtrrd | |- ( k e. NN -> ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) <_ ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) |
| 123 | 49 63 | rpdivcld | |- ( k e. NN -> ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) e. RR+ ) |
| 124 | nfcv | |- F/_ n k |
|
| 125 | nfmpt1 | |- F/_ n ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| 126 | 2 125 | nfcxfr | |- F/_ n I |
| 127 | nfcv | |- F/_ n ( 2 x. k ) |
|
| 128 | 126 127 | nffv | |- F/_ n ( I ` ( 2 x. k ) ) |
| 129 | nfcv | |- F/_ n / |
|
| 130 | nfcv | |- F/_ n ( ( 2 x. k ) + 1 ) |
|
| 131 | 126 130 | nffv | |- F/_ n ( I ` ( ( 2 x. k ) + 1 ) ) |
| 132 | 128 129 131 | nfov | |- F/_ n ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) |
| 133 | oveq2 | |- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
|
| 134 | 133 | fveq2d | |- ( n = k -> ( I ` ( 2 x. n ) ) = ( I ` ( 2 x. k ) ) ) |
| 135 | 133 | fvoveq1d | |- ( n = k -> ( I ` ( ( 2 x. n ) + 1 ) ) = ( I ` ( ( 2 x. k ) + 1 ) ) ) |
| 136 | 134 135 | oveq12d | |- ( n = k -> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) = ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 137 | 124 132 136 3 | fvmptf | |- ( ( k e. NN /\ ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) e. RR+ ) -> ( G ` k ) = ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 138 | 123 137 | mpdan | |- ( k e. NN -> ( G ` k ) = ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 139 | 5 | a1i | |- ( k e. NN -> L = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) ) |
| 140 | simpr | |- ( ( k e. NN /\ n = k ) -> n = k ) |
|
| 141 | 140 | oveq2d | |- ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) |
| 142 | 141 | oveq1d | |- ( ( k e. NN /\ n = k ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 143 | 142 141 | oveq12d | |- ( ( k e. NN /\ n = k ) -> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) |
| 144 | 139 143 53 77 | fvmptd | |- ( k e. NN -> ( L ` k ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) |
| 145 | 122 138 144 | 3brtr4d | |- ( k e. NN -> ( G ` k ) <_ ( L ` k ) ) |
| 146 | 145 | adantl | |- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( L ` k ) ) |
| 147 | 78 79 | dividd | |- ( k e. NN -> ( ( I ` ( ( 2 x. k ) + 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) = 1 ) |
| 148 | 63 | rpred | |- ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) e. RR ) |
| 149 | 2 47 | wallispilem1 | |- ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) <_ ( I ` ( 2 x. k ) ) ) |
| 150 | 148 50 63 149 | lediv1dd | |- ( k e. NN -> ( ( I ` ( ( 2 x. k ) + 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) <_ ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 151 | 147 150 | eqbrtrrd | |- ( k e. NN -> 1 <_ ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 152 | 151 138 | breqtrrd | |- ( k e. NN -> 1 <_ ( G ` k ) ) |
| 153 | 152 | adantl | |- ( ( T. /\ k e. NN ) -> 1 <_ ( G ` k ) ) |
| 154 | 7 8 13 17 35 44 146 153 | climsqz2 | |- ( T. -> G ~~> 1 ) |
| 155 | 154 | mptru | |- G ~~> 1 |
| 156 | 6 155 | eqbrtrri | |- H ~~> 1 |