This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim1fr1.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 · 𝑛 ) + 𝐵 ) / ( 𝐴 · 𝑛 ) ) ) | |
| clim1fr1.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| clim1fr1.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| clim1fr1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | clim1fr1 | ⊢ ( 𝜑 → 𝐹 ⇝ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim1fr1.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 · 𝑛 ) + 𝐵 ) / ( 𝐴 · 𝑛 ) ) ) | |
| 2 | clim1fr1.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 3 | clim1fr1.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 4 | clim1fr1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 5 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 6 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 7 | nnex | ⊢ ℕ ∈ V | |
| 8 | 7 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ 1 ) ∈ V |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ 1 ) ∈ V ) |
| 10 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 11 | eqidd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ 1 ) = ( 𝑛 ∈ ℕ ↦ 1 ) ) | |
| 12 | eqidd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 1 = 1 ) | |
| 13 | id | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) | |
| 14 | 1cnd | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) | |
| 15 | 11 12 13 14 | fvmptd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) = 1 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) = 1 ) |
| 17 | 5 6 9 10 16 | climconst | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ 1 ) ⇝ 1 ) |
| 18 | 7 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 · 𝑛 ) + 𝐵 ) / ( 𝐴 · 𝑛 ) ) ) ∈ V |
| 19 | 1 18 | eqeltri | ⊢ 𝐹 ∈ V |
| 20 | 19 | a1i | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 21 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 22 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 23 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ≠ 0 ) |
| 26 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 28 | 21 22 24 25 27 | divdiv1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐵 / 𝐴 ) / 𝑛 ) = ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) |
| 29 | 28 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐵 / 𝐴 ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ) |
| 30 | 4 2 3 | divcld | ⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ ℂ ) |
| 31 | divcnv | ⊢ ( ( 𝐵 / 𝐴 ) ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( ( 𝐵 / 𝐴 ) / 𝑛 ) ) ⇝ 0 ) | |
| 32 | 30 31 | syl | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐵 / 𝐴 ) / 𝑛 ) ) ⇝ 0 ) |
| 33 | 29 32 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ⇝ 0 ) |
| 34 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ 1 ) = ( 𝑛 ∈ ℕ ↦ 1 ) | |
| 35 | 1cnd | ⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) | |
| 36 | 34 35 | fmpti | ⊢ ( 𝑛 ∈ ℕ ↦ 1 ) : ℕ ⟶ ℂ |
| 37 | 36 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ 1 ) : ℕ ⟶ ℂ ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) ∈ ℂ ) |
| 39 | 22 24 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 · 𝑛 ) ∈ ℂ ) |
| 40 | 22 24 25 27 | mulne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 · 𝑛 ) ≠ 0 ) |
| 41 | 21 39 40 | divcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 / ( 𝐴 · 𝑛 ) ) ∈ ℂ ) |
| 42 | 41 | fmpttd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) : ℕ ⟶ ℂ ) |
| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 44 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 · 𝑛 ) = ( 𝐴 · 𝑘 ) ) | |
| 45 | 44 | oveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 · 𝑛 ) + 𝐵 ) = ( ( 𝐴 · 𝑘 ) + 𝐵 ) ) |
| 46 | 45 44 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ( 𝐴 · 𝑛 ) + 𝐵 ) / ( 𝐴 · 𝑛 ) ) = ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) ) |
| 47 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 48 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 49 | 47 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 50 | 48 49 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
| 51 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 52 | 50 51 | addcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 · 𝑘 ) + 𝐵 ) ∈ ℂ ) |
| 53 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ≠ 0 ) |
| 54 | 47 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 55 | 48 49 53 54 | mulne0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · 𝑘 ) ≠ 0 ) |
| 56 | 52 50 55 | divcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) ∈ ℂ ) |
| 57 | 1 46 47 56 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) ) |
| 58 | 50 51 50 55 | divdird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) = ( ( ( 𝐴 · 𝑘 ) / ( 𝐴 · 𝑘 ) ) + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) ) |
| 59 | 50 55 | dividd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 · 𝑘 ) / ( 𝐴 · 𝑘 ) ) = 1 ) |
| 60 | 59 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) / ( 𝐴 · 𝑘 ) ) + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) = ( 1 + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) ) |
| 61 | 58 60 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐴 · 𝑘 ) + 𝐵 ) / ( 𝐴 · 𝑘 ) ) = ( 1 + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) ) |
| 62 | 16 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 = ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) ) |
| 63 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ) | |
| 64 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) | |
| 65 | 64 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 = 𝑘 ) → ( 𝐴 · 𝑛 ) = ( 𝐴 · 𝑘 ) ) |
| 66 | 65 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 = 𝑘 ) → ( 𝐵 / ( 𝐴 · 𝑛 ) ) = ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) |
| 67 | 51 50 55 | divcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐵 / ( 𝐴 · 𝑘 ) ) ∈ ℂ ) |
| 68 | 63 66 47 67 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) = ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) |
| 69 | 68 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐵 / ( 𝐴 · 𝑘 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ) |
| 70 | 62 69 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 + ( 𝐵 / ( 𝐴 · 𝑘 ) ) ) = ( ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) + ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 71 | 57 61 70 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( ( 𝑛 ∈ ℕ ↦ 1 ) ‘ 𝑘 ) + ( ( 𝑛 ∈ ℕ ↦ ( 𝐵 / ( 𝐴 · 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
| 72 | 5 6 17 20 33 38 43 71 | climadd | ⊢ ( 𝜑 → 𝐹 ⇝ ( 1 + 0 ) ) |
| 73 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 74 | 72 73 | breqtrdi | ⊢ ( 𝜑 → 𝐹 ⇝ 1 ) |