This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for uspgrlim . (Contributed by AV, 16-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uspgrlimlem1.m | |- M = ( H ClNeighbVtx X ) |
|
| uspgrlimlem1.j | |- J = ( Edg ` H ) |
||
| uspgrlimlem1.l | |- L = { x e. J | x C_ M } |
||
| Assertion | uspgrlimlem2 | |- ( H e. USPGraph -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrlimlem1.m | |- M = ( H ClNeighbVtx X ) |
|
| 2 | uspgrlimlem1.j | |- J = ( Edg ` H ) |
|
| 3 | uspgrlimlem1.l | |- L = { x e. J | x C_ M } |
|
| 4 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 5 | 4 | uspgrf1oedg | |- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) ) |
| 6 | f1ocnv | |- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) ) |
|
| 7 | f1of | |- ( `' ( iEdg ` H ) : ( Edg ` H ) -1-1-onto-> dom ( iEdg ` H ) -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( H e. USPGraph -> `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) ) |
| 9 | 2 | rabeqi | |- { x e. J | x C_ M } = { x e. ( Edg ` H ) | x C_ M } |
| 10 | 3 9 | eqtri | |- L = { x e. ( Edg ` H ) | x C_ M } |
| 11 | 10 | ssrab3 | |- L C_ ( Edg ` H ) |
| 12 | fimarab | |- ( ( `' ( iEdg ` H ) : ( Edg ` H ) --> dom ( iEdg ` H ) /\ L C_ ( Edg ` H ) ) -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | E. y e. L ( `' ( iEdg ` H ) ` y ) = x } ) |
|
| 13 | 8 11 12 | sylancl | |- ( H e. USPGraph -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | E. y e. L ( `' ( iEdg ` H ) ` y ) = x } ) |
| 14 | sseq1 | |- ( x = y -> ( x C_ M <-> y C_ M ) ) |
|
| 15 | 14 3 | elrab2 | |- ( y e. L <-> ( y e. J /\ y C_ M ) ) |
| 16 | 2 | eleq2i | |- ( y e. J <-> y e. ( Edg ` H ) ) |
| 17 | 16 | biimpi | |- ( y e. J -> y e. ( Edg ` H ) ) |
| 18 | f1ocnvfv2 | |- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ y e. ( Edg ` H ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
|
| 19 | 5 17 18 | syl2an | |- ( ( H e. USPGraph /\ y e. J ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = y ) |
| 20 | 19 | eqcomd | |- ( ( H e. USPGraph /\ y e. J ) -> y = ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) ) |
| 21 | 20 | sseq1d | |- ( ( H e. USPGraph /\ y e. J ) -> ( y C_ M <-> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 22 | 21 | biimpd | |- ( ( H e. USPGraph /\ y e. J ) -> ( y C_ M -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) |
| 23 | 22 | ex | |- ( H e. USPGraph -> ( y e. J -> ( y C_ M -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) ) |
| 24 | 23 | adantr | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( y e. J -> ( y C_ M -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) ) ) |
| 25 | 24 | imp32 | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) |
| 26 | 25 | 3adant3 | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) /\ ( `' ( iEdg ` H ) ` y ) = x ) -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M ) |
| 27 | fveq2 | |- ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) = ( ( iEdg ` H ) ` x ) ) |
|
| 28 | 27 | sseq1d | |- ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 29 | 28 | 3ad2ant3 | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) /\ ( `' ( iEdg ` H ) ` y ) = x ) -> ( ( ( iEdg ` H ) ` ( `' ( iEdg ` H ) ` y ) ) C_ M <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 30 | 26 29 | mpbid | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( y e. J /\ y C_ M ) /\ ( `' ( iEdg ` H ) ` y ) = x ) -> ( ( iEdg ` H ) ` x ) C_ M ) |
| 31 | 30 | 3exp | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( ( y e. J /\ y C_ M ) -> ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` x ) C_ M ) ) ) |
| 32 | 15 31 | biimtrid | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( y e. L -> ( ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` x ) C_ M ) ) ) |
| 33 | 32 | rexlimdv | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( E. y e. L ( `' ( iEdg ` H ) ` y ) = x -> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 34 | fveqeq2 | |- ( y = ( ( iEdg ` H ) ` x ) -> ( ( `' ( iEdg ` H ) ` y ) = x <-> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) ) |
|
| 35 | f1of | |- ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) ) |
|
| 36 | eqid | |- dom ( iEdg ` H ) = dom ( iEdg ` H ) |
|
| 37 | 2 | eqcomi | |- ( Edg ` H ) = J |
| 38 | 36 37 | feq23i | |- ( ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) <-> ( iEdg ` H ) : dom ( iEdg ` H ) --> J ) |
| 39 | 38 | biimpi | |- ( ( iEdg ` H ) : dom ( iEdg ` H ) --> ( Edg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> J ) |
| 40 | 5 35 39 | 3syl | |- ( H e. USPGraph -> ( iEdg ` H ) : dom ( iEdg ` H ) --> J ) |
| 41 | 40 | ffvelcdmda | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( ( iEdg ` H ) ` x ) e. J ) |
| 42 | 41 | anim1i | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> ( ( ( iEdg ` H ) ` x ) e. J /\ ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 43 | sseq1 | |- ( y = ( ( iEdg ` H ) ` x ) -> ( y C_ M <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
|
| 44 | 14 43 3 | elrab2w | |- ( ( ( iEdg ` H ) ` x ) e. L <-> ( ( ( iEdg ` H ) ` x ) e. J /\ ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 45 | 42 44 | sylibr | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> ( ( iEdg ` H ) ` x ) e. L ) |
| 46 | f1ocnvfv1 | |- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-onto-> ( Edg ` H ) /\ x e. dom ( iEdg ` H ) ) -> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) |
|
| 47 | 5 46 | sylan | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) |
| 48 | 47 | adantr | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> ( `' ( iEdg ` H ) ` ( ( iEdg ` H ) ` x ) ) = x ) |
| 49 | 34 45 48 | rspcedvdw | |- ( ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) /\ ( ( iEdg ` H ) ` x ) C_ M ) -> E. y e. L ( `' ( iEdg ` H ) ` y ) = x ) |
| 50 | 49 | ex | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( ( ( iEdg ` H ) ` x ) C_ M -> E. y e. L ( `' ( iEdg ` H ) ` y ) = x ) ) |
| 51 | 33 50 | impbid | |- ( ( H e. USPGraph /\ x e. dom ( iEdg ` H ) ) -> ( E. y e. L ( `' ( iEdg ` H ) ` y ) = x <-> ( ( iEdg ` H ) ` x ) C_ M ) ) |
| 52 | 51 | rabbidva | |- ( H e. USPGraph -> { x e. dom ( iEdg ` H ) | E. y e. L ( `' ( iEdg ` H ) ` y ) = x } = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |
| 53 | 13 52 | eqtrd | |- ( H e. USPGraph -> ( `' ( iEdg ` H ) " L ) = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ M } ) |