This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a restricted class abstraction. This is to elrab2 what elab2gw is to elab2g . (Contributed by SN, 2-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrab2w.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| elrab2w.2 | ⊢ ( 𝑦 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | ||
| elrab2w.3 | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } | ||
| Assertion | elrab2w | ⊢ ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrab2w.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elrab2w.2 | ⊢ ( 𝑦 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | elrab2w.3 | ⊢ 𝐶 = { 𝑥 ∈ 𝐵 ∣ 𝜑 } | |
| 4 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
| 5 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) → 𝐴 ∈ V ) |
| 7 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 8 | 7 1 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 9 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 10 | 9 2 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 11 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 12 | 3 11 | eqtri | ⊢ 𝐶 = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } |
| 13 | 8 10 12 | elab2gw | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 14 | 4 6 13 | pm5.21nii | ⊢ ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜒 ) ) |