This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimarab | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐹 “ 𝑋 ) = { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑦 ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑦 ( 𝐹 “ 𝑋 ) | |
| 3 | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 } | |
| 4 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 5 | fvelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 “ 𝑋 ) ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) | |
| 6 | 5 | anbi2d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
| 7 | 4 6 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
| 8 | fimass | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝐹 “ 𝑋 ) ⊆ 𝐵 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐹 “ 𝑋 ) ⊆ 𝐵 ) |
| 10 | 9 | sseld | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 “ 𝑋 ) → 𝑦 ∈ 𝐵 ) ) |
| 11 | 10 | pm4.71rd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 “ 𝑋 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ) ) ) |
| 12 | rabid | ⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
| 14 | 7 11 13 | 3bitr4d | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 “ 𝑋 ) ↔ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) ) |
| 15 | 1 2 3 14 | eqrd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐹 “ 𝑋 ) = { 𝑦 ∈ 𝐵 ∣ ∃ 𝑥 ∈ 𝑋 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |