This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for usgr2pth . (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgr2pthlem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgr2pthlem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | usgr2pthlem | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2pthlem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgr2pthlem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 5 | 0le2 | ⊢ 0 ≤ 2 | |
| 6 | elfz2nn0 | ⊢ ( 0 ∈ ( 0 ... 2 ) ↔ ( 0 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 0 ≤ 2 ) ) | |
| 7 | 3 4 5 6 | mpbir3an | ⊢ 0 ∈ ( 0 ... 2 ) |
| 8 | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ 0 ∈ ( 0 ... 2 ) ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) | |
| 9 | 7 8 | mpan2 | ⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 10 | 9 | adantl | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 0 ) ∈ 𝑉 ) |
| 11 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 12 | 1le2 | ⊢ 1 ≤ 2 | |
| 13 | elfz2nn0 | ⊢ ( 1 ∈ ( 0 ... 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 1 ≤ 2 ) ) | |
| 14 | 11 4 12 13 | mpbir3an | ⊢ 1 ∈ ( 0 ... 2 ) |
| 15 | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ 1 ∈ ( 0 ... 2 ) ) → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) | |
| 16 | 14 15 | mpan2 | ⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
| 17 | 16 | adantl | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ∈ 𝑉 ) |
| 18 | simpr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ USGraph ) | |
| 19 | fvex | ⊢ ( 𝑃 ‘ 1 ) ∈ V | |
| 20 | 18 19 | jctir | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 1 ) ∈ V ) ) |
| 21 | prcom | ⊢ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } | |
| 22 | 21 | eqeq2i | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
| 23 | 22 | biimpi | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } ) |
| 26 | 2 | usgrnloopv | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 1 ) ∈ V ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 0 ) } → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) ) |
| 27 | 20 25 26 | sylc | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 29 | 19 | elsn | ⊢ ( ( 𝑃 ‘ 1 ) ∈ { ( 𝑃 ‘ 0 ) } ↔ ( 𝑃 ‘ 1 ) = ( 𝑃 ‘ 0 ) ) |
| 30 | 29 | necon3bbii | ⊢ ( ¬ ( 𝑃 ‘ 1 ) ∈ { ( 𝑃 ‘ 0 ) } ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 31 | 28 30 | sylibr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ¬ ( 𝑃 ‘ 1 ) ∈ { ( 𝑃 ‘ 0 ) } ) |
| 32 | 17 31 | eldifd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) |
| 34 | sneq | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → { 𝑥 } = { ( 𝑃 ‘ 0 ) } ) | |
| 35 | 34 | difeq2d | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑉 ∖ { 𝑥 } ) = ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) |
| 36 | 35 | eleq2d | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { 𝑥 } ) ↔ ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { 𝑥 } ) ↔ ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) } ) ) ) |
| 38 | 33 37 | mpbird | ⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( 𝑃 ‘ 1 ) ∈ ( 𝑉 ∖ { 𝑥 } ) ) |
| 39 | 2re | ⊢ 2 ∈ ℝ | |
| 40 | 39 | leidi | ⊢ 2 ≤ 2 |
| 41 | elfz2nn0 | ⊢ ( 2 ∈ ( 0 ... 2 ) ↔ ( 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 ≤ 2 ) ) | |
| 42 | 4 4 40 41 | mpbir3an | ⊢ 2 ∈ ( 0 ... 2 ) |
| 43 | ffvelcdm | ⊢ ( ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ 2 ∈ ( 0 ... 2 ) ) → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) | |
| 44 | 42 43 | mpan2 | ⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
| 45 | 44 | adantl | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ∈ 𝑉 ) |
| 46 | 2 | usgrf1 | ⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ) |
| 47 | 46 | ad2antlr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ) |
| 48 | simpl | ⊢ ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) | |
| 49 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) |
| 50 | 47 49 | jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 51 | 2nn | ⊢ 2 ∈ ℕ | |
| 52 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 2 ) ↔ 2 ∈ ℕ ) | |
| 53 | 51 52 | mpbir | ⊢ 0 ∈ ( 0 ..^ 2 ) |
| 54 | 1lt2 | ⊢ 1 < 2 | |
| 55 | elfzo0 | ⊢ ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) ) | |
| 56 | 11 51 54 55 | mpbir3an | ⊢ 1 ∈ ( 0 ..^ 2 ) |
| 57 | 53 56 | pm3.2i | ⊢ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) |
| 58 | 57 | a1i | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) ) |
| 59 | 0ne1 | ⊢ 0 ≠ 1 | |
| 60 | 59 | a1i | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → 0 ≠ 1 ) |
| 61 | 50 58 60 | 3jca | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) ∧ 0 ≠ 1 ) ) |
| 62 | simpr | ⊢ ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 63 | 62 | ad2antrr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 64 | 2f1fvneq | ⊢ ( ( ( 𝐼 : dom 𝐼 –1-1→ ran 𝐼 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ ( 0 ∈ ( 0 ..^ 2 ) ∧ 1 ∈ ( 0 ..^ 2 ) ) ∧ 0 ≠ 1 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 65 | 61 63 64 | sylc | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 66 | necom | ⊢ ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) | |
| 67 | fvex | ⊢ ( 𝑃 ‘ 0 ) ∈ V | |
| 68 | fvex | ⊢ ( 𝑃 ‘ 2 ) ∈ V | |
| 69 | 67 19 68 | 3pm3.2i | ⊢ ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ 1 ) ∈ V ∧ ( 𝑃 ‘ 2 ) ∈ V ) |
| 70 | fvexd | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝑃 ‘ 0 ) ∈ V ) | |
| 71 | simpl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) | |
| 72 | 71 | ad2antlr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 73 | 18 70 72 | jca31 | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 75 | 2 | usgrnloopv | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 76 | 75 | imp | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 0 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 77 | 74 76 | syl | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 78 | pr1nebg | ⊢ ( ( ( ( 𝑃 ‘ 0 ) ∈ V ∧ ( 𝑃 ‘ 1 ) ∈ V ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 79 | 69 77 78 | sylancr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 80 | 66 79 | bitrid | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ≠ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 81 | 65 80 | mpbird | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 82 | fvexd | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝑃 ‘ 2 ) ∈ V ) | |
| 83 | prcom | ⊢ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } | |
| 84 | 83 | eqeq2i | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
| 85 | 84 | biimpi | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
| 86 | 85 | adantl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
| 87 | 86 | ad2antlr | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) |
| 88 | 18 82 87 | jca31 | ⊢ ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 90 | 2 | usgrnloopv | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 91 | 90 | imp | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑃 ‘ 2 ) ∈ V ) ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 1 ) } ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 92 | 89 91 | syl | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 93 | 81 92 | nelprd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ¬ ( 𝑃 ‘ 2 ) ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 94 | 45 93 | eldifd | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 95 | 94 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 96 | preq12 | ⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → { 𝑥 , 𝑦 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) | |
| 97 | 96 | difeq2d | ⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( 𝑉 ∖ { 𝑥 , 𝑦 } ) = ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 98 | 97 | eleq2d | ⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ↔ ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) ) |
| 99 | 98 | adantll | ⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ↔ ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) ) |
| 100 | 95 99 | mpbird | ⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( 𝑃 ‘ 2 ) ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ) |
| 101 | eqcom | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ 0 ) = 𝑥 ) | |
| 102 | eqcom | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 1 ) = 𝑦 ) | |
| 103 | eqcom | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) ↔ ( 𝑃 ‘ 2 ) = 𝑧 ) | |
| 104 | 101 102 103 | 3anbi123i | ⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ↔ ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ) |
| 105 | 104 | biimpi | ⊢ ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ) |
| 106 | 105 | ad4ant123 | ⊢ ( ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ) |
| 107 | 101 | biimpi | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ 0 ) = 𝑥 ) |
| 108 | 107 | ad2antrr | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 0 ) = 𝑥 ) |
| 109 | 102 | biimpi | ⊢ ( 𝑦 = ( 𝑃 ‘ 1 ) → ( 𝑃 ‘ 1 ) = 𝑦 ) |
| 110 | 109 | ad2antlr | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 1 ) = 𝑦 ) |
| 111 | 108 110 | preq12d | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝑥 , 𝑦 } ) |
| 112 | 111 | eqeq2d | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ) ) |
| 113 | 103 | biimpi | ⊢ ( 𝑧 = ( 𝑃 ‘ 2 ) → ( 𝑃 ‘ 2 ) = 𝑧 ) |
| 114 | 113 | adantl | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( 𝑃 ‘ 2 ) = 𝑧 ) |
| 115 | 110 114 | preq12d | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝑦 , 𝑧 } ) |
| 116 | 115 | eqeq2d | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) |
| 117 | 112 116 | anbi12d | ⊢ ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) |
| 118 | 117 | biimpa | ⊢ ( ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) |
| 119 | 106 118 | jca | ⊢ ( ( ( ( 𝑥 = ( 𝑃 ‘ 0 ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) |
| 120 | 119 | exp41 | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑦 = ( 𝑃 ‘ 1 ) → ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 121 | 120 | adantl | ⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( 𝑦 = ( 𝑃 ‘ 1 ) → ( 𝑧 = ( 𝑃 ‘ 2 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 122 | 121 | imp31 | ⊢ ( ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) ∧ 𝑧 = ( 𝑃 ‘ 2 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 123 | 100 122 | rspcimedv | ⊢ ( ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) ∧ 𝑦 = ( 𝑃 ‘ 1 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 124 | 38 123 | rspcimedv | ⊢ ( ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ∧ 𝑥 = ( 𝑃 ‘ 0 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 125 | 10 124 | rspcimedv | ⊢ ( ( ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ∧ 𝐺 ∈ USGraph ) ∧ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 126 | 125 | exp41 | ⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐺 ∈ USGraph → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) ) |
| 127 | 126 | com15 | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐺 ∈ USGraph → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) ) |
| 128 | 127 | pm2.43i | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝐺 ∈ USGraph → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 129 | 128 | com12 | ⊢ ( 𝐺 ∈ USGraph → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 130 | 129 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 131 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) | |
| 132 | 131 | raleqdv | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ ( 0 ..^ 2 ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 133 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 134 | 133 | raleqi | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 2 ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 135 | 2wlklem | ⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 136 | 134 135 | bitri | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 2 ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 137 | 132 136 | bitrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
| 138 | 137 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
| 139 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) ) | |
| 140 | 139 | feq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ) |
| 141 | 140 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ) |
| 142 | f1eq2 | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) | |
| 143 | 131 142 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 144 | 143 | imbi1d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 145 | 144 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 146 | 141 145 | imbi12d | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ↔ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 147 | 130 138 146 | 3imtr4d | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 148 | 147 | com14 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 149 | 148 | com23 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 150 | 149 | 3imp | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |