This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two one-to-one functions are applied on different arguments, also the values are different. (Contributed by Alexander van der Vekens, 25-Jan-2018) (Proof shortened by AV, 30-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2f1fvneq | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → 𝑋 ≠ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐸 : 𝐷 –1-1→ 𝑅 ) | |
| 2 | f1f | ⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷 → 𝐹 : 𝐶 ⟶ 𝐷 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) → 𝐹 : 𝐶 ⟶ 𝐷 ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → 𝐹 : 𝐶 ⟶ 𝐷 ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → 𝐴 ∈ 𝐶 ) |
| 7 | 4 6 | ffvelcdmd | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ) |
| 8 | 7 | 3adant3 | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ) |
| 9 | simpr | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → 𝐵 ∈ 𝐶 ) |
| 11 | 4 10 | ffvelcdmd | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) |
| 12 | 11 | 3adant3 | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) |
| 13 | simpr | ⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) → 𝐹 : 𝐶 –1-1→ 𝐷 ) | |
| 14 | df-3an | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) ) | |
| 15 | 14 | biimpri | ⊢ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ) |
| 16 | dff14i | ⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) | |
| 17 | 13 15 16 | syl3an132 | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) |
| 18 | dff14i | ⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐴 ) ≠ ( 𝐹 ‘ 𝐵 ) ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 19 | 1 8 12 17 18 | syl13anc | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 20 | simpl | ⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ) | |
| 21 | simpr | ⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) | |
| 22 | 20 21 | neeq12d | ⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) ≠ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ 𝑋 ≠ 𝑌 ) ) |
| 23 | 19 22 | syl5ibcom | ⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → 𝑋 ≠ 𝑌 ) ) |