This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgr2pthlem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgr2pthlem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | usgr2pth | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2pthlem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgr2pthlem.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | usgr2pthspth | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) | |
| 4 | usgrupgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐺 ∈ UPGraph ) |
| 6 | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) | |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
| 8 | 1 2 | upgrf1istrl | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 9 | 8 | anbi1d | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 10 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) | |
| 11 | f1eq2 | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 13 | 12 | biimpd | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 15 | 14 | com12 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 17 | 16 | ad2antrl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 18 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) ) | |
| 19 | 18 | feq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ) |
| 20 | df-f1 | ⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ↔ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ Fun ◡ 𝑃 ) ) | |
| 21 | 20 | simplbi2 | ⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
| 22 | 21 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 23 | 19 22 | sylbid | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 25 | 24 | com3l | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( Fun ◡ 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
| 29 | 1 2 | usgr2pthlem | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 30 | 29 | ad2antrl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 31 | 17 28 30 | 3jcad | ⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 32 | 31 | ex | ⊢ ( 𝐺 ∈ UPGraph → ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 33 | 9 32 | sylbid | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 34 | 7 33 | sylbid | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 35 | 34 | com23 | ⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 36 | 5 35 | mpcom | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 37 | 3 36 | sylbid | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 38 | 37 | ex | ⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 39 | 38 | impcomd | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 40 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 41 | f1f | ⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) ⟶ dom 𝐼 ) | |
| 42 | fnfzo0hash | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝐹 : ( 0 ..^ 2 ) ⟶ dom 𝐼 ) → ( ♯ ‘ 𝐹 ) = 2 ) | |
| 43 | 40 41 42 | sylancr | ⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( ♯ ‘ 𝐹 ) = 2 ) |
| 44 | oveq2 | ⊢ ( 2 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 45 | 44 | eqcoms | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 46 | f1eq2 | ⊢ ( ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
| 48 | 47 | biimpd | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
| 49 | 48 | imp | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 50 | 49 | adantr | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 51 | 50 | ad2antrr | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 52 | f1f | ⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) | |
| 53 | oveq2 | ⊢ ( 2 = ( ♯ ‘ 𝐹 ) → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 54 | 53 | eqcoms | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 55 | 54 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 56 | 55 | feq2d | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 57 | 52 56 | imbitrid | ⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 58 | 57 | imp | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 59 | 58 | ad2antrr | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 60 | eqcom | ⊢ ( ( 𝑃 ‘ 0 ) = 𝑥 ↔ 𝑥 = ( 𝑃 ‘ 0 ) ) | |
| 61 | 60 | biimpi | ⊢ ( ( 𝑃 ‘ 0 ) = 𝑥 → 𝑥 = ( 𝑃 ‘ 0 ) ) |
| 62 | 61 | 3ad2ant1 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑥 = ( 𝑃 ‘ 0 ) ) |
| 63 | eqcom | ⊢ ( ( 𝑃 ‘ 1 ) = 𝑦 ↔ 𝑦 = ( 𝑃 ‘ 1 ) ) | |
| 64 | 63 | biimpi | ⊢ ( ( 𝑃 ‘ 1 ) = 𝑦 → 𝑦 = ( 𝑃 ‘ 1 ) ) |
| 65 | 64 | 3ad2ant2 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑦 = ( 𝑃 ‘ 1 ) ) |
| 66 | 62 65 | preq12d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → { 𝑥 , 𝑦 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 67 | 66 | eqeq2d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 68 | 67 | biimpcd | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 69 | 68 | adantr | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 70 | 69 | impcom | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 71 | eqcom | ⊢ ( ( 𝑃 ‘ 2 ) = 𝑧 ↔ 𝑧 = ( 𝑃 ‘ 2 ) ) | |
| 72 | 71 | biimpi | ⊢ ( ( 𝑃 ‘ 2 ) = 𝑧 → 𝑧 = ( 𝑃 ‘ 2 ) ) |
| 73 | 72 | 3ad2ant3 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑧 = ( 𝑃 ‘ 2 ) ) |
| 74 | 65 73 | preq12d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → { 𝑦 , 𝑧 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 75 | 74 | eqeq2d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 76 | 75 | biimpcd | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 77 | 76 | adantl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 78 | 77 | impcom | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 79 | 70 78 | jca | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 80 | 79 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 81 | 80 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 82 | 81 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 83 | 82 | a1i13 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
| 84 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 85 | 10 84 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
| 86 | 85 | raleqdv | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 87 | 2wlklem | ⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) | |
| 88 | 86 87 | bitrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
| 89 | 88 | imbi2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( 𝐺 ∈ USGraph → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
| 90 | 83 89 | sylibrd | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 92 | 91 | imp | ⊢ ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 93 | 92 | imp | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 94 | 51 59 93 | 3jca | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 95 | 20 | simprbi | ⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → Fun ◡ 𝑃 ) |
| 96 | 95 | adantl | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → Fun ◡ 𝑃 ) |
| 97 | 96 | ad2antrr | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → Fun ◡ 𝑃 ) |
| 98 | 94 97 | jca | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) |
| 99 | 7 9 | bitrd | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 100 | 4 99 | syl | ⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 101 | 100 | adantl | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 102 | 98 101 | mpbird | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
| 103 | simpr | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ USGraph ) | |
| 104 | simp-4l | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( ♯ ‘ 𝐹 ) = 2 ) | |
| 105 | 103 104 3 | syl2anc | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
| 106 | 102 105 | mpbird | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 107 | 106 104 | jca | ⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) |
| 108 | 107 | ex | ⊢ ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
| 109 | 108 | exp41 | ⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) ) ) ) |
| 110 | 43 109 | mpcom | ⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) ) ) |
| 111 | 110 | 3imp | ⊢ ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
| 112 | 111 | com12 | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
| 113 | 39 112 | impbid | ⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |