This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for usgr2pth . (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgr2pthlem.v | |- V = ( Vtx ` G ) |
|
| usgr2pthlem.i | |- I = ( iEdg ` G ) |
||
| Assertion | usgr2pthlem | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr2pthlem.v | |- V = ( Vtx ` G ) |
|
| 2 | usgr2pthlem.i | |- I = ( iEdg ` G ) |
|
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | 2nn0 | |- 2 e. NN0 |
|
| 5 | 0le2 | |- 0 <_ 2 |
|
| 6 | elfz2nn0 | |- ( 0 e. ( 0 ... 2 ) <-> ( 0 e. NN0 /\ 2 e. NN0 /\ 0 <_ 2 ) ) |
|
| 7 | 3 4 5 6 | mpbir3an | |- 0 e. ( 0 ... 2 ) |
| 8 | ffvelcdm | |- ( ( P : ( 0 ... 2 ) --> V /\ 0 e. ( 0 ... 2 ) ) -> ( P ` 0 ) e. V ) |
|
| 9 | 7 8 | mpan2 | |- ( P : ( 0 ... 2 ) --> V -> ( P ` 0 ) e. V ) |
| 10 | 9 | adantl | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 0 ) e. V ) |
| 11 | 1nn0 | |- 1 e. NN0 |
|
| 12 | 1le2 | |- 1 <_ 2 |
|
| 13 | elfz2nn0 | |- ( 1 e. ( 0 ... 2 ) <-> ( 1 e. NN0 /\ 2 e. NN0 /\ 1 <_ 2 ) ) |
|
| 14 | 11 4 12 13 | mpbir3an | |- 1 e. ( 0 ... 2 ) |
| 15 | ffvelcdm | |- ( ( P : ( 0 ... 2 ) --> V /\ 1 e. ( 0 ... 2 ) ) -> ( P ` 1 ) e. V ) |
|
| 16 | 14 15 | mpan2 | |- ( P : ( 0 ... 2 ) --> V -> ( P ` 1 ) e. V ) |
| 17 | 16 | adantl | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 1 ) e. V ) |
| 18 | simpr | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> G e. USGraph ) |
|
| 19 | fvex | |- ( P ` 1 ) e. _V |
|
| 20 | 18 19 | jctir | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( G e. USGraph /\ ( P ` 1 ) e. _V ) ) |
| 21 | prcom | |- { ( P ` 0 ) , ( P ` 1 ) } = { ( P ` 1 ) , ( P ` 0 ) } |
|
| 22 | 21 | eqeq2i | |- ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } <-> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 23 | 22 | biimpi | |- ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 24 | 23 | adantr | |- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 25 | 24 | ad2antlr | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } ) |
| 26 | 2 | usgrnloopv | |- ( ( G e. USGraph /\ ( P ` 1 ) e. _V ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 1 ) , ( P ` 0 ) } -> ( P ` 1 ) =/= ( P ` 0 ) ) ) |
| 27 | 20 25 26 | sylc | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
| 28 | 27 | adantr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
| 29 | 19 | elsn | |- ( ( P ` 1 ) e. { ( P ` 0 ) } <-> ( P ` 1 ) = ( P ` 0 ) ) |
| 30 | 29 | necon3bbii | |- ( -. ( P ` 1 ) e. { ( P ` 0 ) } <-> ( P ` 1 ) =/= ( P ` 0 ) ) |
| 31 | 28 30 | sylibr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> -. ( P ` 1 ) e. { ( P ` 0 ) } ) |
| 32 | 17 31 | eldifd | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) |
| 33 | 32 | adantr | |- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) |
| 34 | sneq | |- ( x = ( P ` 0 ) -> { x } = { ( P ` 0 ) } ) |
|
| 35 | 34 | difeq2d | |- ( x = ( P ` 0 ) -> ( V \ { x } ) = ( V \ { ( P ` 0 ) } ) ) |
| 36 | 35 | eleq2d | |- ( x = ( P ` 0 ) -> ( ( P ` 1 ) e. ( V \ { x } ) <-> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) ) |
| 37 | 36 | adantl | |- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( ( P ` 1 ) e. ( V \ { x } ) <-> ( P ` 1 ) e. ( V \ { ( P ` 0 ) } ) ) ) |
| 38 | 33 37 | mpbird | |- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( P ` 1 ) e. ( V \ { x } ) ) |
| 39 | 2re | |- 2 e. RR |
|
| 40 | 39 | leidi | |- 2 <_ 2 |
| 41 | elfz2nn0 | |- ( 2 e. ( 0 ... 2 ) <-> ( 2 e. NN0 /\ 2 e. NN0 /\ 2 <_ 2 ) ) |
|
| 42 | 4 4 40 41 | mpbir3an | |- 2 e. ( 0 ... 2 ) |
| 43 | ffvelcdm | |- ( ( P : ( 0 ... 2 ) --> V /\ 2 e. ( 0 ... 2 ) ) -> ( P ` 2 ) e. V ) |
|
| 44 | 42 43 | mpan2 | |- ( P : ( 0 ... 2 ) --> V -> ( P ` 2 ) e. V ) |
| 45 | 44 | adantl | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) e. V ) |
| 46 | 2 | usgrf1 | |- ( G e. USGraph -> I : dom I -1-1-> ran I ) |
| 47 | 46 | ad2antlr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> I : dom I -1-1-> ran I ) |
| 48 | simpl | |- ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> F : ( 0 ..^ 2 ) -1-1-> dom I ) |
|
| 49 | 48 | ad2antrr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> F : ( 0 ..^ 2 ) -1-1-> dom I ) |
| 50 | 47 49 | jca | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( I : dom I -1-1-> ran I /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 51 | 2nn | |- 2 e. NN |
|
| 52 | lbfzo0 | |- ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) |
|
| 53 | 51 52 | mpbir | |- 0 e. ( 0 ..^ 2 ) |
| 54 | 1lt2 | |- 1 < 2 |
|
| 55 | elfzo0 | |- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
|
| 56 | 11 51 54 55 | mpbir3an | |- 1 e. ( 0 ..^ 2 ) |
| 57 | 53 56 | pm3.2i | |- ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) |
| 58 | 57 | a1i | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) ) |
| 59 | 0ne1 | |- 0 =/= 1 |
|
| 60 | 59 | a1i | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> 0 =/= 1 ) |
| 61 | 50 58 60 | 3jca | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( I : dom I -1-1-> ran I /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) /\ 0 =/= 1 ) ) |
| 62 | simpr | |- ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 63 | 62 | ad2antrr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 64 | 2f1fvneq | |- ( ( ( I : dom I -1-1-> ran I /\ F : ( 0 ..^ 2 ) -1-1-> dom I ) /\ ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) /\ 0 =/= 1 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 65 | 61 63 64 | sylc | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) |
| 66 | necom | |- ( ( P ` 2 ) =/= ( P ` 0 ) <-> ( P ` 0 ) =/= ( P ` 2 ) ) |
|
| 67 | fvex | |- ( P ` 0 ) e. _V |
|
| 68 | fvex | |- ( P ` 2 ) e. _V |
|
| 69 | 67 19 68 | 3pm3.2i | |- ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) |
| 70 | fvexd | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( P ` 0 ) e. _V ) |
|
| 71 | simpl | |- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) |
|
| 72 | 71 | ad2antlr | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 73 | 18 70 72 | jca31 | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) /\ ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 74 | 73 | adantr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) /\ ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 75 | 2 | usgrnloopv | |- ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 76 | 75 | imp | |- ( ( ( G e. USGraph /\ ( P ` 0 ) e. _V ) /\ ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 77 | 74 76 | syl | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 78 | pr1nebg | |- ( ( ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> ( ( P ` 0 ) =/= ( P ` 2 ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 79 | 69 77 78 | sylancr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( P ` 0 ) =/= ( P ` 2 ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 80 | 66 79 | bitrid | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( P ` 2 ) =/= ( P ` 0 ) <-> { ( P ` 0 ) , ( P ` 1 ) } =/= { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 81 | 65 80 | mpbird | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) =/= ( P ` 0 ) ) |
| 82 | fvexd | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( P ` 2 ) e. _V ) |
|
| 83 | prcom | |- { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 2 ) , ( P ` 1 ) } |
|
| 84 | 83 | eqeq2i | |- ( ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } <-> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 85 | 84 | biimpi | |- ( ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } -> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 86 | 85 | adantl | |- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 87 | 86 | ad2antlr | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) |
| 88 | 18 82 87 | jca31 | |- ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) -> ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) /\ ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) ) |
| 89 | 88 | adantr | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) /\ ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) ) |
| 90 | 2 | usgrnloopv | |- ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) -> ( ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } -> ( P ` 2 ) =/= ( P ` 1 ) ) ) |
| 91 | 90 | imp | |- ( ( ( G e. USGraph /\ ( P ` 2 ) e. _V ) /\ ( I ` ( F ` 1 ) ) = { ( P ` 2 ) , ( P ` 1 ) } ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
| 92 | 89 91 | syl | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) =/= ( P ` 1 ) ) |
| 93 | 81 92 | nelprd | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> -. ( P ` 2 ) e. { ( P ` 0 ) , ( P ` 1 ) } ) |
| 94 | 45 93 | eldifd | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 95 | 94 | ad2antrr | |- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 96 | preq12 | |- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) -> { x , y } = { ( P ` 0 ) , ( P ` 1 ) } ) |
|
| 97 | 96 | difeq2d | |- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) -> ( V \ { x , y } ) = ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) |
| 98 | 97 | eleq2d | |- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) -> ( ( P ` 2 ) e. ( V \ { x , y } ) <-> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
| 99 | 98 | adantll | |- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( ( P ` 2 ) e. ( V \ { x , y } ) <-> ( P ` 2 ) e. ( V \ { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
| 100 | 95 99 | mpbird | |- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( P ` 2 ) e. ( V \ { x , y } ) ) |
| 101 | eqcom | |- ( x = ( P ` 0 ) <-> ( P ` 0 ) = x ) |
|
| 102 | eqcom | |- ( y = ( P ` 1 ) <-> ( P ` 1 ) = y ) |
|
| 103 | eqcom | |- ( z = ( P ` 2 ) <-> ( P ` 2 ) = z ) |
|
| 104 | 101 102 103 | 3anbi123i | |- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) /\ z = ( P ` 2 ) ) <-> ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) ) |
| 105 | 104 | biimpi | |- ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) /\ z = ( P ` 2 ) ) -> ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) ) |
| 106 | 105 | ad4ant123 | |- ( ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) ) |
| 107 | 101 | biimpi | |- ( x = ( P ` 0 ) -> ( P ` 0 ) = x ) |
| 108 | 107 | ad2antrr | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( P ` 0 ) = x ) |
| 109 | 102 | biimpi | |- ( y = ( P ` 1 ) -> ( P ` 1 ) = y ) |
| 110 | 109 | ad2antlr | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( P ` 1 ) = y ) |
| 111 | 108 110 | preq12d | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> { ( P ` 0 ) , ( P ` 1 ) } = { x , y } ) |
| 112 | 111 | eqeq2d | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } <-> ( I ` ( F ` 0 ) ) = { x , y } ) ) |
| 113 | 103 | biimpi | |- ( z = ( P ` 2 ) -> ( P ` 2 ) = z ) |
| 114 | 113 | adantl | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( P ` 2 ) = z ) |
| 115 | 110 114 | preq12d | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> { ( P ` 1 ) , ( P ` 2 ) } = { y , z } ) |
| 116 | 115 | eqeq2d | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } <-> ( I ` ( F ` 1 ) ) = { y , z } ) ) |
| 117 | 112 116 | anbi12d | |- ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) <-> ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) |
| 118 | 117 | biimpa | |- ( ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) |
| 119 | 106 118 | jca | |- ( ( ( ( x = ( P ` 0 ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) |
| 120 | 119 | exp41 | |- ( x = ( P ` 0 ) -> ( y = ( P ` 1 ) -> ( z = ( P ` 2 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 121 | 120 | adantl | |- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( y = ( P ` 1 ) -> ( z = ( P ` 2 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 122 | 121 | imp31 | |- ( ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) /\ z = ( P ` 2 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 123 | 100 122 | rspcimedv | |- ( ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) /\ y = ( P ` 1 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 124 | 38 123 | rspcimedv | |- ( ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) /\ x = ( P ` 0 ) ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 125 | 10 124 | rspcimedv | |- ( ( ( ( F : ( 0 ..^ 2 ) -1-1-> dom I /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) /\ G e. USGraph ) /\ P : ( 0 ... 2 ) --> V ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |
| 126 | 125 | exp41 | |- ( F : ( 0 ..^ 2 ) -1-1-> dom I -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( G e. USGraph -> ( P : ( 0 ... 2 ) --> V -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) ) |
| 127 | 126 | com15 | |- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( G e. USGraph -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) ) |
| 128 | 127 | pm2.43i | |- ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( G e. USGraph -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 129 | 128 | com12 | |- ( G e. USGraph -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 130 | 129 | adantr | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 131 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
|
| 132 | 131 | raleqdv | |- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. ( 0 ..^ 2 ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 133 | fzo0to2pr | |- ( 0 ..^ 2 ) = { 0 , 1 } |
|
| 134 | 133 | raleqi | |- ( A. i e. ( 0 ..^ 2 ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. { 0 , 1 } ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 135 | 2wlklem | |- ( A. i e. { 0 , 1 } ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
|
| 136 | 134 135 | bitri | |- ( A. i e. ( 0 ..^ 2 ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
| 137 | 132 136 | bitrdi | |- ( ( # ` F ) = 2 -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
| 138 | 137 | adantl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
| 139 | oveq2 | |- ( ( # ` F ) = 2 -> ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) ) |
|
| 140 | 139 | feq2d | |- ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 2 ) --> V ) ) |
| 141 | 140 | adantl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 2 ) --> V ) ) |
| 142 | f1eq2 | |- ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
|
| 143 | 131 142 | syl | |- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> F : ( 0 ..^ 2 ) -1-1-> dom I ) ) |
| 144 | 143 | imbi1d | |- ( ( # ` F ) = 2 -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 145 | 144 | adantl | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) <-> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) |
| 146 | 141 145 | imbi12d | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( ( P : ( 0 ... ( # ` F ) ) --> V -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) <-> ( P : ( 0 ... 2 ) --> V -> ( F : ( 0 ..^ 2 ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 147 | 130 138 146 | 3imtr4d | |- ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 148 | 147 | com14 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 149 | 148 | com23 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> ( P : ( 0 ... ( # ` F ) ) --> V -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) ) ) |
| 150 | 149 | 3imp | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. i e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. USGraph /\ ( # ` F ) = 2 ) -> E. x e. V E. y e. ( V \ { x } ) E. z e. ( V \ { x , y } ) ( ( ( P ` 0 ) = x /\ ( P ` 1 ) = y /\ ( P ` 2 ) = z ) /\ ( ( I ` ( F ` 0 ) ) = { x , y } /\ ( I ` ( F ` 1 ) ) = { y , z } ) ) ) ) |