This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptx.1 | ⊢ 𝑇 = ( 𝑅 ×t 𝑆 ) | |
| uptx.2 | ⊢ 𝑋 = ∪ 𝑅 | ||
| uptx.3 | ⊢ 𝑌 = ∪ 𝑆 | ||
| uptx.4 | ⊢ 𝑍 = ( 𝑋 × 𝑌 ) | ||
| uptx.5 | ⊢ 𝑃 = ( 1st ↾ 𝑍 ) | ||
| uptx.6 | ⊢ 𝑄 = ( 2nd ↾ 𝑍 ) | ||
| Assertion | uptx | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃! ℎ ∈ ( 𝑈 Cn 𝑇 ) ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptx.1 | ⊢ 𝑇 = ( 𝑅 ×t 𝑆 ) | |
| 2 | uptx.2 | ⊢ 𝑋 = ∪ 𝑅 | |
| 3 | uptx.3 | ⊢ 𝑌 = ∪ 𝑆 | |
| 4 | uptx.4 | ⊢ 𝑍 = ( 𝑋 × 𝑌 ) | |
| 5 | uptx.5 | ⊢ 𝑃 = ( 1st ↾ 𝑍 ) | |
| 6 | uptx.6 | ⊢ 𝑄 = ( 2nd ↾ 𝑍 ) | |
| 7 | eqid | ⊢ ∪ 𝑈 = ∪ 𝑈 | |
| 8 | eqid | ⊢ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) | |
| 9 | 7 8 | txcnmpt | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 10 | 1 | oveq2i | ⊢ ( 𝑈 Cn 𝑇 ) = ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) |
| 11 | 9 10 | eleqtrrdi | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ) |
| 12 | 7 2 | cnf | ⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝐹 : ∪ 𝑈 ⟶ 𝑋 ) |
| 13 | 7 3 | cnf | ⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) |
| 14 | ffn | ⊢ ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 → 𝐹 Fn ∪ 𝑈 ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐹 Fn ∪ 𝑈 ) |
| 16 | fo1st | ⊢ 1st : V –onto→ V | |
| 17 | fofn | ⊢ ( 1st : V –onto→ V → 1st Fn V ) | |
| 18 | 16 17 | ax-mp | ⊢ 1st Fn V |
| 19 | ssv | ⊢ ( 𝑋 × 𝑌 ) ⊆ V | |
| 20 | fnssres | ⊢ ( ( 1st Fn V ∧ ( 𝑋 × 𝑌 ) ⊆ V ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) | |
| 21 | 18 19 20 | mp2an | ⊢ ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) |
| 22 | ffvelcdm | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑥 ∈ ∪ 𝑈 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) | |
| 23 | ffvelcdm | ⊢ ( ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑥 ∈ ∪ 𝑈 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑌 ) | |
| 24 | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑌 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) | |
| 25 | 22 23 24 | syl2an | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑥 ∈ ∪ 𝑈 ) ∧ ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑥 ∈ ∪ 𝑈 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 26 | 25 | anandirs | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑥 ∈ ∪ 𝑈 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 27 | 26 | fmpttd | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ) |
| 28 | ffn | ⊢ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ) |
| 30 | 27 | frnd | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ran ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 31 | fnco | ⊢ ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ∧ ran ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝑋 × 𝑌 ) ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) | |
| 32 | 21 29 30 31 | mp3an2i | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) |
| 33 | fvco3 | ⊢ ( ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | |
| 34 | 27 33 | sylan | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 37 | 35 36 | opeq12d | ⊢ ( 𝑥 = 𝑧 → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 38 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ V | |
| 39 | 37 8 38 | fvmpt | ⊢ ( 𝑧 ∈ ∪ 𝑈 → ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 40 | 39 | adantl | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 42 | ffvelcdm | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑋 ) | |
| 43 | ffvelcdm | ⊢ ( ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑌 ) | |
| 44 | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝑌 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) | |
| 45 | 42 43 44 | syl2an | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑧 ∈ ∪ 𝑈 ) ∧ ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑧 ∈ ∪ 𝑈 ) ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 46 | 45 | anandirs | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 47 | 46 | fvresd | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 48 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 49 | fvex | ⊢ ( 𝐺 ‘ 𝑧 ) ∈ V | |
| 50 | 48 49 | op1st | ⊢ ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) |
| 51 | 47 50 | eqtrdi | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 52 | 34 41 51 | 3eqtrrd | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
| 53 | 15 32 52 | eqfnfvd | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐹 = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 54 | 4 | reseq2i | ⊢ ( 1st ↾ 𝑍 ) = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 55 | 5 54 | eqtri | ⊢ 𝑃 = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 56 | 55 | coeq1i | ⊢ ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 57 | 53 56 | eqtr4di | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 58 | 12 13 57 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 59 | ffn | ⊢ ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 → 𝐺 Fn ∪ 𝑈 ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐺 Fn ∪ 𝑈 ) |
| 61 | fo2nd | ⊢ 2nd : V –onto→ V | |
| 62 | fofn | ⊢ ( 2nd : V –onto→ V → 2nd Fn V ) | |
| 63 | 61 62 | ax-mp | ⊢ 2nd Fn V |
| 64 | fnssres | ⊢ ( ( 2nd Fn V ∧ ( 𝑋 × 𝑌 ) ⊆ V ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) | |
| 65 | 63 19 64 | mp2an | ⊢ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) |
| 66 | fnco | ⊢ ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ∧ ran ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝑋 × 𝑌 ) ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) | |
| 67 | 65 29 30 66 | mp3an2i | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) |
| 68 | fvco3 | ⊢ ( ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | |
| 69 | 27 68 | sylan | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 70 | 40 | fveq2d | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 71 | 46 | fvresd | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 72 | 48 49 | op2nd | ⊢ ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) |
| 73 | 71 72 | eqtrdi | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 74 | 69 70 73 | 3eqtrrd | ⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
| 75 | 60 67 74 | eqfnfvd | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐺 = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 76 | 4 | reseq2i | ⊢ ( 2nd ↾ 𝑍 ) = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 77 | 6 76 | eqtri | ⊢ 𝑄 = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 78 | 77 | coeq1i | ⊢ ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 79 | 75 78 | eqtr4di | ⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 80 | 12 13 79 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 81 | 11 58 80 | jca32 | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) |
| 82 | eleq1 | ⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ↔ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ) ) | |
| 83 | coeq2 | ⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑃 ∘ ℎ ) = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | |
| 84 | 83 | eqeq2d | ⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐹 = ( 𝑃 ∘ ℎ ) ↔ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
| 85 | coeq2 | ⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑄 ∘ ℎ ) = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | |
| 86 | 85 | eqeq2d | ⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐺 = ( 𝑄 ∘ ℎ ) ↔ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
| 87 | 84 86 | anbi12d | ⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) |
| 88 | 82 87 | anbi12d | ⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ↔ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) ) |
| 89 | 88 | spcegv | ⊢ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) → ( ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 90 | 11 81 89 | sylc | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 91 | eqid | ⊢ ∪ 𝑇 = ∪ 𝑇 | |
| 92 | 7 91 | cnf | ⊢ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) → ℎ : ∪ 𝑈 ⟶ ∪ 𝑇 ) |
| 93 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑅 ∈ Top ) | |
| 94 | cntop2 | ⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑆 ∈ Top ) | |
| 95 | 1 | unieqi | ⊢ ∪ 𝑇 = ∪ ( 𝑅 ×t 𝑆 ) |
| 96 | 2 3 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 97 | 95 96 | eqtr4id | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝑇 = ( 𝑋 × 𝑌 ) ) |
| 98 | 93 94 97 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∪ 𝑇 = ( 𝑋 × 𝑌 ) ) |
| 99 | 98 | feq3d | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ℎ : ∪ 𝑈 ⟶ ∪ 𝑇 ↔ ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ) ) |
| 100 | 92 99 | imbitrid | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ℎ ∈ ( 𝑈 Cn 𝑇 ) → ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ) ) |
| 101 | 100 | anim1d | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 102 | 3anass | ⊢ ( ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) | |
| 103 | 101 102 | imbitrrdi | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 104 | 103 | alrimiv | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∀ ℎ ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 105 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑈 ∈ Top ) | |
| 106 | 105 | uniexd | ⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → ∪ 𝑈 ∈ V ) |
| 107 | 55 77 | upxp | ⊢ ( ( ∪ 𝑈 ∈ V ∧ 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ∃! ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| 108 | 106 12 13 107 | syl2an3an | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃! ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| 109 | eumo | ⊢ ( ∃! ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ∃* ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) | |
| 110 | 108 109 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃* ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| 111 | moim | ⊢ ( ∀ ℎ ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ∃* ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) | |
| 112 | 104 110 111 | sylc | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 113 | df-reu | ⊢ ( ∃! ℎ ∈ ( 𝑈 Cn 𝑇 ) ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) | |
| 114 | df-eu | ⊢ ( ∃! ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ↔ ( ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) | |
| 115 | 113 114 | bitri | ⊢ ( ∃! ℎ ∈ ( 𝑈 Cn 𝑇 ) ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 116 | 90 112 115 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃! ℎ ∈ ( 𝑈 Cn 𝑇 ) ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |