This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcn.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| txcn.2 | ⊢ 𝑌 = ∪ 𝑆 | ||
| txcn.3 | ⊢ 𝑍 = ( 𝑋 × 𝑌 ) | ||
| txcn.4 | ⊢ 𝑊 = ∪ 𝑈 | ||
| txcn.5 | ⊢ 𝑃 = ( 1st ↾ 𝑍 ) | ||
| txcn.6 | ⊢ 𝑄 = ( 2nd ↾ 𝑍 ) | ||
| Assertion | txcn | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ↔ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcn.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | txcn.2 | ⊢ 𝑌 = ∪ 𝑆 | |
| 3 | txcn.3 | ⊢ 𝑍 = ( 𝑋 × 𝑌 ) | |
| 4 | txcn.4 | ⊢ 𝑊 = ∪ 𝑈 | |
| 5 | txcn.5 | ⊢ 𝑃 = ( 1st ↾ 𝑍 ) | |
| 6 | txcn.6 | ⊢ 𝑄 = ( 2nd ↾ 𝑍 ) | |
| 7 | 1 | toptopon | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 | 2 | toptopon | ⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) |
| 9 | 3 | reseq2i | ⊢ ( 1st ↾ 𝑍 ) = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 10 | 5 9 | eqtri | ⊢ 𝑃 = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 11 | tx1cn | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) | |
| 12 | 10 11 | eqeltrid | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
| 13 | 3 | reseq2i | ⊢ ( 2nd ↾ 𝑍 ) = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 14 | 6 13 | eqtri | ⊢ 𝑄 = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 15 | tx2cn | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) | |
| 16 | 14 15 | eqeltrid | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 17 | cnco | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) → ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ) | |
| 18 | cnco | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) → ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) | |
| 19 | 17 18 | anim12dan | ⊢ ( ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ∧ 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) |
| 20 | 19 | expcom | ⊢ ( ( 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ∧ 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 21 | 12 16 20 | syl2anc | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 22 | 7 8 21 | syl2anb | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 24 | cntop1 | ⊢ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) → 𝑈 ∈ Top ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝑈 ∈ Top ) |
| 26 | 4 | topopn | ⊢ ( 𝑈 ∈ Top → 𝑊 ∈ 𝑈 ) |
| 27 | 25 26 | syl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝑊 ∈ 𝑈 ) |
| 28 | 4 1 | cnf | ⊢ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) → ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ) |
| 29 | 28 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ) |
| 30 | 4 2 | cnf | ⊢ ( ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) → ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) |
| 31 | 30 | ad2antll | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) |
| 32 | 10 14 | upxp | ⊢ ( ( 𝑊 ∈ 𝑈 ∧ ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ∧ ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) → ∃! ℎ ( ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 33 | feq3 | ⊢ ( 𝑍 = ( 𝑋 × 𝑌 ) → ( ℎ : 𝑊 ⟶ 𝑍 ↔ ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ) ) | |
| 34 | 3 33 | ax-mp | ⊢ ( ℎ : 𝑊 ⟶ 𝑍 ↔ ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ) |
| 35 | 34 | 3anbi1i | ⊢ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ( ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 36 | 35 | eubii | ⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ( ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 37 | 32 36 | sylibr | ⊢ ( ( 𝑊 ∈ 𝑈 ∧ ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ∧ ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) → ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 38 | 27 29 31 37 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 39 | euex | ⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃ ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) | |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃ ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 41 | simpll3 | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝐹 : 𝑊 ⟶ 𝑍 ) | |
| 42 | 27 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝑊 ∈ 𝑈 ) |
| 43 | 41 42 | fexd | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝐹 ∈ V ) |
| 44 | eumo | ⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) | |
| 45 | 38 44 | syl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 47 | simpr | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) | |
| 48 | 3anass | ⊢ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) | |
| 49 | coeq2 | ⊢ ( 𝐹 = ℎ → ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ) | |
| 50 | coeq2 | ⊢ ( 𝐹 = ℎ → ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) | |
| 51 | 49 50 | jca | ⊢ ( 𝐹 = ℎ → ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 52 | 51 | eqcoms | ⊢ ( ℎ = 𝐹 → ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 53 | 52 | biantrud | ⊢ ( ℎ = 𝐹 → ( ℎ : 𝑊 ⟶ 𝑍 ↔ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 54 | feq1 | ⊢ ( ℎ = 𝐹 → ( ℎ : 𝑊 ⟶ 𝑍 ↔ 𝐹 : 𝑊 ⟶ 𝑍 ) ) | |
| 55 | 53 54 | bitr3d | ⊢ ( ℎ = 𝐹 → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ↔ 𝐹 : 𝑊 ⟶ 𝑍 ) ) |
| 56 | 48 55 | bitrid | ⊢ ( ℎ = 𝐹 → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ 𝐹 : 𝑊 ⟶ 𝑍 ) ) |
| 57 | 56 | moi2 | ⊢ ( ( ( 𝐹 ∈ V ∧ ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ∧ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ) → ℎ = 𝐹 ) |
| 58 | 43 46 47 41 57 | syl22anc | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ℎ = 𝐹 ) |
| 59 | eqid | ⊢ ( 𝑅 ×t 𝑆 ) = ( 𝑅 ×t 𝑆 ) | |
| 60 | 59 1 2 3 5 6 | uptx | ⊢ ( ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) → ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 61 | 60 | adantl | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 62 | df-reu | ⊢ ( ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) | |
| 63 | euex | ⊢ ( ∃! ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) | |
| 64 | 62 63 | sylbi | ⊢ ( ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) |
| 65 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 66 | 4 65 | cnf | ⊢ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ℎ : 𝑊 ⟶ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 67 | 1 2 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 68 | 3 67 | eqtrid | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑍 = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 69 | 68 | 3adant3 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → 𝑍 = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 70 | 69 | adantr | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝑍 = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 71 | 70 | feq3d | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ↔ ℎ : 𝑊 ⟶ ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 72 | 66 71 | imbitrrid | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ℎ : 𝑊 ⟶ 𝑍 ) ) |
| 73 | 72 | anim1d | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 74 | 73 48 | imbitrrdi | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) |
| 75 | simpl | ⊢ ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) | |
| 76 | 74 75 | jca2 | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) ) |
| 77 | 76 | eximdv | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ∃ ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) ) |
| 78 | 64 77 | syl5 | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) ) |
| 79 | 61 78 | mpd | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) |
| 80 | eupick | ⊢ ( ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) | |
| 81 | 38 79 80 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) |
| 82 | 81 | imp | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 83 | 58 82 | eqeltrrd | ⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 84 | 40 83 | exlimddv | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 85 | 84 | ex | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → ( ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) |
| 86 | 23 85 | impbid | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ↔ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |