This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upxp.1 | ⊢ 𝑃 = ( 1st ↾ ( 𝐵 × 𝐶 ) ) | |
| upxp.2 | ⊢ 𝑄 = ( 2nd ↾ ( 𝐵 × 𝐶 ) ) | ||
| Assertion | upxp | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∃! ℎ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upxp.1 | ⊢ 𝑃 = ( 1st ↾ ( 𝐵 × 𝐶 ) ) | |
| 2 | upxp.2 | ⊢ 𝑄 = ( 2nd ↾ ( 𝐵 × 𝐶 ) ) | |
| 3 | mptexg | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ V ) | |
| 4 | eueq | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ V ↔ ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐴 ∈ 𝐷 → ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 7 | ffn | ⊢ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) → ℎ Fn 𝐴 ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ℎ Fn 𝐴 ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ℎ Fn 𝐴 ) |
| 10 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 11 | ffvelcdm | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) | |
| 12 | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑥 ∈ 𝐴 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 14 | 13 | anandirs | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 17 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) | |
| 18 | 17 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) |
| 19 | 16 18 | sylib | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) |
| 20 | 19 | ffnd | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ) |
| 22 | xpss | ⊢ ( 𝐵 × 𝐶 ) ⊆ ( V × V ) | |
| 23 | ffvelcdm | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( 𝐵 × 𝐶 ) ) | |
| 24 | 22 23 | sselid | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ) |
| 25 | 24 | 3ad2antl1 | ⊢ ( ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ) |
| 26 | 25 | adantll | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ) |
| 27 | fveq1 | ⊢ ( 𝐹 = ( 𝑃 ∘ ℎ ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑃 ∘ ℎ ) ‘ 𝑧 ) ) | |
| 28 | 1 | coeq1i | ⊢ ( 𝑃 ∘ ℎ ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) |
| 29 | 28 | fveq1i | ⊢ ( ( 𝑃 ∘ ℎ ) ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) |
| 30 | 27 29 | eqtrdi | ⊢ ( 𝐹 = ( 𝑃 ∘ ℎ ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
| 31 | 30 | 3ad2ant2 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
| 32 | 31 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
| 33 | simpr1 | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) | |
| 34 | fvco3 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) | |
| 35 | 33 34 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) |
| 36 | 23 | 3ad2antl1 | ⊢ ( ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( 𝐵 × 𝐶 ) ) |
| 37 | 36 | adantll | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) ∈ ( 𝐵 × 𝐶 ) ) |
| 38 | 37 | fvresd | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) = ( 1st ‘ ( ℎ ‘ 𝑧 ) ) ) |
| 39 | 32 35 38 | 3eqtrrd | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 1st ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 40 | fveq1 | ⊢ ( 𝐺 = ( 𝑄 ∘ ℎ ) → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑄 ∘ ℎ ) ‘ 𝑧 ) ) | |
| 41 | 2 | coeq1i | ⊢ ( 𝑄 ∘ ℎ ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) |
| 42 | 41 | fveq1i | ⊢ ( ( 𝑄 ∘ ℎ ) ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) |
| 43 | 40 42 | eqtrdi | ⊢ ( 𝐺 = ( 𝑄 ∘ ℎ ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
| 44 | 43 | 3ad2ant3 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
| 45 | 44 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) ) |
| 46 | fvco3 | ⊢ ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) | |
| 47 | 33 46 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ℎ ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) ) |
| 48 | 37 | fvresd | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ℎ ‘ 𝑧 ) ) = ( 2nd ‘ ( ℎ ‘ 𝑧 ) ) ) |
| 49 | 45 47 48 | 3eqtrrd | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 2nd ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 50 | eqopi | ⊢ ( ( ( ℎ ‘ 𝑧 ) ∈ ( V × V ) ∧ ( ( 1st ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐹 ‘ 𝑧 ) ∧ ( 2nd ‘ ( ℎ ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) ) → ( ℎ ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) | |
| 51 | 26 39 49 50 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 52 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 53 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 54 | 52 53 | opeq12d | ⊢ ( 𝑥 = 𝑧 → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 55 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ V | |
| 56 | 54 17 55 | fvmpt | ⊢ ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 57 | 56 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 58 | 51 57 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ℎ ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) |
| 59 | 9 21 58 | eqfnfvd | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 60 | 59 | ex | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 61 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 62 | 61 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐹 Fn 𝐴 ) |
| 63 | fo1st | ⊢ 1st : V –onto→ V | |
| 64 | fofn | ⊢ ( 1st : V –onto→ V → 1st Fn V ) | |
| 65 | 63 64 | ax-mp | ⊢ 1st Fn V |
| 66 | ssv | ⊢ ( 𝐵 × 𝐶 ) ⊆ V | |
| 67 | fnssres | ⊢ ( ( 1st Fn V ∧ ( 𝐵 × 𝐶 ) ⊆ V ) → ( 1st ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ) | |
| 68 | 65 66 67 | mp2an | ⊢ ( 1st ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) |
| 69 | 19 | frnd | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ran ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝐵 × 𝐶 ) ) |
| 70 | fnco | ⊢ ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝐵 × 𝐶 ) ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) | |
| 71 | 68 20 69 70 | mp3an2i | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) |
| 72 | fvco3 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | |
| 73 | 19 72 | sylan | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 74 | 56 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 75 | 74 | fveq2d | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 76 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) | |
| 77 | ffvelcdm | ⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) | |
| 78 | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) | |
| 79 | 76 77 78 | syl2an | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝐺 : 𝐴 ⟶ 𝐶 ∧ 𝑧 ∈ 𝐴 ) ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 80 | 79 | anandirs | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 81 | 80 | 3adantl1 | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝐵 × 𝐶 ) ) |
| 82 | 81 | fvresd | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 83 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 84 | fvex | ⊢ ( 𝐺 ‘ 𝑧 ) ∈ V | |
| 85 | 83 84 | op1st | ⊢ ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) |
| 86 | 82 85 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 87 | 73 75 86 | 3eqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
| 88 | 62 71 87 | eqfnfvd | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐹 = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 89 | 1 | coeq1i | ⊢ ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 1st ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 90 | 88 89 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 91 | ffn | ⊢ ( 𝐺 : 𝐴 ⟶ 𝐶 → 𝐺 Fn 𝐴 ) | |
| 92 | 91 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐺 Fn 𝐴 ) |
| 93 | fo2nd | ⊢ 2nd : V –onto→ V | |
| 94 | fofn | ⊢ ( 2nd : V –onto→ V → 2nd Fn V ) | |
| 95 | 93 94 | ax-mp | ⊢ 2nd Fn V |
| 96 | fnssres | ⊢ ( ( 2nd Fn V ∧ ( 𝐵 × 𝐶 ) ⊆ V ) → ( 2nd ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ) | |
| 97 | 95 66 96 | mp2an | ⊢ ( 2nd ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) |
| 98 | fnco | ⊢ ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) Fn ( 𝐵 × 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn 𝐴 ∧ ran ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝐵 × 𝐶 ) ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) | |
| 99 | 97 20 69 98 | mp3an2i | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn 𝐴 ) |
| 100 | fvco3 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) | |
| 101 | 19 100 | sylan | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 102 | 74 | fveq2d | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 103 | 81 | fvresd | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 104 | 83 84 | op2nd | ⊢ ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) |
| 105 | 103 104 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 106 | 101 102 105 | 3eqtrrd | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
| 107 | 92 99 106 | eqfnfvd | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐺 = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 108 | 2 | coeq1i | ⊢ ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 2nd ↾ ( 𝐵 × 𝐶 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 109 | 107 108 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 110 | 19 90 109 | 3jca | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
| 111 | feq1 | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ) ) | |
| 112 | coeq2 | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑃 ∘ ℎ ) = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | |
| 113 | 112 | eqeq2d | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐹 = ( 𝑃 ∘ ℎ ) ↔ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
| 114 | coeq2 | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑄 ∘ ℎ ) = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) | |
| 115 | 114 | eqeq2d | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐺 = ( 𝑄 ∘ ℎ ) ↔ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
| 116 | 111 113 115 | 3anbi123d | ⊢ ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) |
| 117 | 110 116 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 118 | 60 117 | impbid | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 119 | 118 | eubidv | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ( ∃! ℎ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ℎ = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 120 | 6 119 | mpbird | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐶 ) → ∃! ℎ ( ℎ : 𝐴 ⟶ ( 𝐵 × 𝐶 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |