This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map paths onto paths. (Contributed by AV, 31-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimpths.p | ⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimpths | ⊢ ( 𝜑 → 𝐸 ( Paths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimpths.p | ⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | |
| 8 | pthistrl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 10 | 1 2 3 4 5 6 9 | upgrimtrls | ⊢ ( 𝜑 → 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| 11 | 1 2 3 4 5 6 7 | upgrimpthslem1 | ⊢ ( 𝜑 → Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 12 | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 13 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 14 | 7 12 13 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 15 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 16 | 15 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 17 | 7 12 16 | 3syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 18 | 1 2 3 4 5 6 14 17 | upgrimwlklem4 | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) |
| 19 | 18 | ffnd | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 20 | 1 2 3 4 5 6 14 | upgrimwlklem1 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 21 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 22 | 7 12 21 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 23 | 20 22 | eqeltrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
| 24 | 0elfz | ⊢ ( ( ♯ ‘ 𝐸 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 26 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 27 | 22 26 | sylib | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 28 | 20 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐸 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 29 | 27 28 | eleqtrrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 30 | fnimapr | ⊢ ( ( ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐸 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐸 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ) | |
| 31 | 19 25 29 30 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 32 | 31 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ↔ 𝑥 ∈ { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
| 33 | vex | ⊢ 𝑥 ∈ V | |
| 34 | 33 | elpr | ⊢ ( 𝑥 ∈ { ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) , ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) } ↔ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 35 | 32 34 | bitrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ↔ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 36 | 1 2 3 4 5 6 7 | upgrimpthslem2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 37 | 36 | simpld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) |
| 38 | eqeq2 | ⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) ) | |
| 39 | 38 | notbid | ⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) ) |
| 40 | 37 39 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 41 | 36 | simprd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 42 | eqeq2 | ⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 43 | 42 | notbid | ⊢ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 44 | 41 43 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 45 | 40 44 | jaod | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 46 | 45 | impancom | ⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 47 | 46 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) |
| 48 | 47 | nrexdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ¬ ∃ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) |
| 49 | 20 | eqcomd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐸 ) ) |
| 50 | 49 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ 𝐸 ) ) ) |
| 51 | 50 | feq2d | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐻 ) ↔ ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐸 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) ) |
| 52 | 18 51 | mpbird | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐻 ) ) |
| 53 | 52 | ffnd | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑁 ∘ 𝑃 ) Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 55 | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 56 | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 57 | 55 56 | sstri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 58 | 57 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 59 | 54 58 | fvelimabd | ⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ∃ 𝑦 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 60 | 48 59 | mtbird | ⊢ ( ( 𝜑 ∧ ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 61 | 60 | ex | ⊢ ( 𝜑 → ( ( 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∨ 𝑥 = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) → ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 62 | 35 61 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) → ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 63 | 62 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 64 | disj | ⊢ ( ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ∀ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ¬ 𝑥 ∈ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 65 | 63 64 | sylibr | ⊢ ( 𝜑 → ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
| 66 | 20 | oveq2d | ⊢ ( 𝜑 → ( 1 ..^ ( ♯ ‘ 𝐸 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 67 | 66 | reseq2d | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 68 | 67 | cnveqd | ⊢ ( 𝜑 → ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) = ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 69 | 68 | funeqd | ⊢ ( 𝜑 → ( Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ↔ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 70 | preq2 | ⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → { 0 , ( ♯ ‘ 𝐸 ) } = { 0 , ( ♯ ‘ 𝐹 ) } ) | |
| 71 | 70 | imaeq2d | ⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) = ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) |
| 72 | oveq2 | ⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( 1 ..^ ( ♯ ‘ 𝐸 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 73 | 72 | imaeq2d | ⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 74 | 71 73 | ineq12d | ⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 75 | 74 | eqeq1d | ⊢ ( ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) → ( ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ↔ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 76 | 20 75 | syl | ⊢ ( 𝜑 → ( ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ↔ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 77 | 69 76 | 3anbi23d | ⊢ ( 𝜑 → ( ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ) ↔ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
| 78 | 10 11 65 77 | mpbir3and | ⊢ ( 𝜑 → ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ) ) |
| 79 | ispth | ⊢ ( 𝐸 ( Paths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ( 𝑁 ∘ 𝑃 ) “ { 0 , ( ♯ ‘ 𝐸 ) } ) ∩ ( ( 𝑁 ∘ 𝑃 ) “ ( 1 ..^ ( ♯ ‘ 𝐸 ) ) ) ) = ∅ ) ) | |
| 80 | 78 79 | sylibr | ⊢ ( 𝜑 → 𝐸 ( Paths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |