This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map simple paths onto simple paths. (Contributed by AV, 31-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimspths.s | ⊢ ( 𝜑 → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimspths | ⊢ ( 𝜑 → 𝐸 ( SPaths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimspths.s | ⊢ ( 𝜑 → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) | |
| 8 | spthispth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | |
| 9 | pthistrl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| 11 | 1 2 3 4 5 6 10 | upgrimtrls | ⊢ ( 𝜑 → 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| 12 | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) | |
| 13 | 12 | simprbi | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → Fun ◡ 𝑃 ) |
| 14 | 7 13 | syl | ⊢ ( 𝜑 → Fun ◡ 𝑃 ) |
| 15 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 16 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 17 | 15 16 | grimf1o | ⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 18 | dff1o3 | ⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( 𝑁 : ( Vtx ‘ 𝐺 ) –onto→ ( Vtx ‘ 𝐻 ) ∧ Fun ◡ 𝑁 ) ) | |
| 19 | 18 | simprbi | ⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → Fun ◡ 𝑁 ) |
| 20 | 5 17 19 | 3syl | ⊢ ( 𝜑 → Fun ◡ 𝑁 ) |
| 21 | funco | ⊢ ( ( Fun ◡ 𝑃 ∧ Fun ◡ 𝑁 ) → Fun ( ◡ 𝑃 ∘ ◡ 𝑁 ) ) | |
| 22 | 14 20 21 | syl2anc | ⊢ ( 𝜑 → Fun ( ◡ 𝑃 ∘ ◡ 𝑁 ) ) |
| 23 | cnvco | ⊢ ◡ ( 𝑁 ∘ 𝑃 ) = ( ◡ 𝑃 ∘ ◡ 𝑁 ) | |
| 24 | 23 | funeqi | ⊢ ( Fun ◡ ( 𝑁 ∘ 𝑃 ) ↔ Fun ( ◡ 𝑃 ∘ ◡ 𝑁 ) ) |
| 25 | 22 24 | sylibr | ⊢ ( 𝜑 → Fun ◡ ( 𝑁 ∘ 𝑃 ) ) |
| 26 | isspth | ⊢ ( 𝐸 ( SPaths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ ( 𝑁 ∘ 𝑃 ) ) ) | |
| 27 | 11 25 26 | sylanbrc | ⊢ ( 𝜑 → 𝐸 ( SPaths ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |