This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for upgrimpths . (Contributed by AV, 30-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimpths.p | ⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimpthslem1 | ⊢ ( 𝜑 → Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimpths.p | ⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | |
| 8 | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) | |
| 9 | 8 | simp2bi | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝜑 → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 11 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 12 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 13 | 11 12 | grimf1o | ⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 14 | dff1o3 | ⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ ( 𝑁 : ( Vtx ‘ 𝐺 ) –onto→ ( Vtx ‘ 𝐻 ) ∧ Fun ◡ 𝑁 ) ) | |
| 15 | 14 | simprbi | ⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → Fun ◡ 𝑁 ) |
| 16 | 5 13 15 | 3syl | ⊢ ( 𝜑 → Fun ◡ 𝑁 ) |
| 17 | funco | ⊢ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ Fun ◡ 𝑁 ) → Fun ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) ) | |
| 18 | 10 16 17 | syl2anc | ⊢ ( 𝜑 → Fun ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) ) |
| 19 | resco | ⊢ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 20 | 19 | cnveqi | ⊢ ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 21 | cnvco | ⊢ ◡ ( 𝑁 ∘ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) | |
| 22 | 20 21 | eqtri | ⊢ ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) |
| 23 | 22 | funeqi | ⊢ ( Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ( ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∘ ◡ 𝑁 ) ) |
| 24 | 18 23 | sylibr | ⊢ ( 𝜑 → Fun ◡ ( ( 𝑁 ∘ 𝑃 ) ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |