This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimtrls.t | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimtrls | ⊢ ( 𝜑 → 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimtrls.t | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 8 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 10 | 1 2 3 4 5 6 9 | upgrimwlk | ⊢ ( 𝜑 → 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐻 ∈ USPGraph ) |
| 12 | 2 | uspgrf1oedg | ⊢ ( 𝐻 ∈ USPGraph → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ) |
| 14 | 1 2 3 4 5 6 7 | upgrimtrlslem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) |
| 15 | f1ocnvdm | ⊢ ( ( 𝐽 : dom 𝐽 –1-1-onto→ ( Edg ‘ 𝐻 ) ∧ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ( Edg ‘ 𝐻 ) ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 17 | 16 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ dom 𝐹 ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ) |
| 18 | 1 2 3 4 5 6 7 | upgrimtrlslem2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ dom 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ) → ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 19 | 18 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 20 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 21 | 20 | imaeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 23 | 6 22 | f1mpt | ⊢ ( 𝐸 : dom 𝐹 –1-1→ dom 𝐽 ↔ ( ∀ 𝑥 ∈ dom 𝐹 ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ dom 𝐽 ∧ ∀ 𝑥 ∈ dom 𝐹 ∀ 𝑦 ∈ dom 𝐹 ( ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 24 | 17 19 23 | sylanbrc | ⊢ ( 𝜑 → 𝐸 : dom 𝐹 –1-1→ dom 𝐽 ) |
| 25 | eqidd | ⊢ ( 𝜑 → 𝐸 = 𝐸 ) | |
| 26 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 27 | 7 8 26 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 28 | 1 2 3 4 5 6 27 | upgrimwlklem1 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐹 ) ) |
| 29 | 28 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 30 | wrddm | ⊢ ( 𝐹 ∈ Word dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 31 | 8 26 30 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 32 | 7 31 | syl | ⊢ ( 𝜑 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 33 | 29 32 | eqtr4d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = dom 𝐹 ) |
| 34 | eqidd | ⊢ ( 𝜑 → dom 𝐽 = dom 𝐽 ) | |
| 35 | 25 33 34 | f1eq123d | ⊢ ( 𝜑 → ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 ↔ 𝐸 : dom 𝐹 –1-1→ dom 𝐽 ) ) |
| 36 | 24 35 | mpbird | ⊢ ( 𝜑 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 ) |
| 37 | df-f1 | ⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 ↔ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ dom 𝐽 ∧ Fun ◡ 𝐸 ) ) | |
| 38 | 37 | simprbi | ⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) –1-1→ dom 𝐽 → Fun ◡ 𝐸 ) |
| 39 | 36 38 | syl | ⊢ ( 𝜑 → Fun ◡ 𝐸 ) |
| 40 | istrl | ⊢ ( 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ↔ ( 𝐸 ( Walks ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ∧ Fun ◡ 𝐸 ) ) | |
| 41 | 10 39 40 | sylanbrc | ⊢ ( 𝜑 → 𝐸 ( Trails ‘ 𝐻 ) ( 𝑁 ∘ 𝑃 ) ) |