This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgrimpths . (Contributed by AV, 31-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | ||
| upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | ||
| upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | ||
| upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | ||
| upgrimpths.p | ⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | ||
| Assertion | upgrimpthslem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | upgrimwlk.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | upgrimwlk.g | ⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) | |
| 4 | upgrimwlk.h | ⊢ ( 𝜑 → 𝐻 ∈ USPGraph ) | |
| 5 | upgrimwlk.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) ) | |
| 6 | upgrimwlk.e | ⊢ 𝐸 = ( 𝑥 ∈ dom 𝐹 ↦ ( ◡ 𝐽 ‘ ( 𝑁 “ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) | |
| 7 | upgrimpths.p | ⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) | |
| 8 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 10 | 8 9 | grimf1o | ⊢ ( 𝑁 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
| 11 | f1of1 | ⊢ ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) | |
| 12 | 5 10 11 | 3syl | ⊢ ( 𝜑 → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 14 | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 15 | 8 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 17 | fzo0ss1 | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 18 | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 19 | 17 18 | sstri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 20 | 19 | sseli | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 22 | 16 21 | ffvelcdmd | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 23 | 22 | ex | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 24 | 7 14 23 | 3syl | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 26 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 27 | 0elfz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 29 | 15 28 | ffvelcdmd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 30 | 7 14 29 | 3syl | ⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 32 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 34 | 7 14 26 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 35 | 34 27 | syl | ⊢ ( 𝜑 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 37 | elfzole1 | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 1 ≤ 𝑋 ) | |
| 38 | elfzoelz | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ∈ ℤ ) | |
| 39 | zgt0ge1 | ⊢ ( 𝑋 ∈ ℤ → ( 0 < 𝑋 ↔ 1 ≤ 𝑋 ) ) | |
| 40 | 38 39 | syl | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 < 𝑋 ↔ 1 ≤ 𝑋 ) ) |
| 41 | simpr | ⊢ ( ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 < 𝑋 ) → 0 < 𝑋 ) | |
| 42 | 41 | gt0ne0d | ⊢ ( ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 < 𝑋 ) → 𝑋 ≠ 0 ) |
| 43 | 42 | ex | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 < 𝑋 → 𝑋 ≠ 0 ) ) |
| 44 | 40 43 | sylbird | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( 1 ≤ 𝑋 → 𝑋 ≠ 0 ) ) |
| 45 | 37 44 | mpd | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ≠ 0 ) |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ≠ 0 ) |
| 47 | pthdivtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑋 ≠ 0 ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ 0 ) ) | |
| 48 | 32 33 36 46 47 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ 0 ) ) |
| 49 | dff14i | ⊢ ( ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ 0 ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) | |
| 50 | 13 25 31 48 49 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) |
| 51 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 52 | 26 51 | sylib | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 53 | 15 52 | ffvelcdmd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 54 | 7 14 53 | 3syl | ⊢ ( 𝜑 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ) |
| 56 | 34 51 | sylib | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 58 | 38 | zred | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ∈ ℝ ) |
| 59 | elfzolt2 | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 < ( ♯ ‘ 𝐹 ) ) | |
| 60 | 58 59 | ltned | ⊢ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑋 ≠ ( ♯ ‘ 𝐹 ) ) |
| 61 | 60 | adantl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ≠ ( ♯ ‘ 𝐹 ) ) |
| 62 | pthdivtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑋 ≠ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | |
| 63 | 32 33 57 61 62 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
| 64 | dff14i | ⊢ ( ( 𝑁 : ( Vtx ‘ 𝐺 ) –1-1→ ( Vtx ‘ 𝐻 ) ∧ ( ( 𝑃 ‘ 𝑋 ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑃 ‘ 𝑋 ) ≠ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 65 | 13 25 55 63 64 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 66 | 7 14 15 | 3syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 67 | 66 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 68 | 20 | adantl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 69 | 67 68 | fvco3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ) |
| 70 | 67 36 | fvco3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) = ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) |
| 71 | 69 70 | neeq12d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ↔ ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ) ) |
| 72 | 67 57 | fvco3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 73 | 69 72 | neeq12d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 74 | 71 73 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ 0 ) ) ∧ ( 𝑁 ‘ ( 𝑃 ‘ 𝑋 ) ) ≠ ( 𝑁 ‘ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 75 | 50 65 74 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 76 | df-ne | ⊢ ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ) | |
| 77 | df-ne | ⊢ ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ↔ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) | |
| 78 | 76 77 | anbi12i | ⊢ ( ( ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) ≠ ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |
| 79 | 75 78 | sylib | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ 0 ) ∧ ¬ ( ( 𝑁 ∘ 𝑃 ) ‘ 𝑋 ) = ( ( 𝑁 ∘ 𝑃 ) ‘ ( ♯ ‘ 𝐹 ) ) ) ) |