This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map paths onto paths. (Contributed by AV, 31-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimpths.p | |- ( ph -> F ( Paths ` G ) P ) |
||
| Assertion | upgrimpths | |- ( ph -> E ( Paths ` H ) ( N o. P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimpths.p | |- ( ph -> F ( Paths ` G ) P ) |
|
| 8 | pthistrl | |- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
|
| 9 | 7 8 | syl | |- ( ph -> F ( Trails ` G ) P ) |
| 10 | 1 2 3 4 5 6 9 | upgrimtrls | |- ( ph -> E ( Trails ` H ) ( N o. P ) ) |
| 11 | 1 2 3 4 5 6 7 | upgrimpthslem1 | |- ( ph -> Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |
| 12 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 13 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 14 | 7 12 13 | 3syl | |- ( ph -> F e. Word dom I ) |
| 15 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 16 | 15 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 17 | 7 12 16 | 3syl | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 18 | 1 2 3 4 5 6 14 17 | upgrimwlklem4 | |- ( ph -> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) ) |
| 19 | 18 | ffnd | |- ( ph -> ( N o. P ) Fn ( 0 ... ( # ` E ) ) ) |
| 20 | 1 2 3 4 5 6 14 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 21 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 22 | 7 12 21 | 3syl | |- ( ph -> ( # ` F ) e. NN0 ) |
| 23 | 20 22 | eqeltrd | |- ( ph -> ( # ` E ) e. NN0 ) |
| 24 | 0elfz | |- ( ( # ` E ) e. NN0 -> 0 e. ( 0 ... ( # ` E ) ) ) |
|
| 25 | 23 24 | syl | |- ( ph -> 0 e. ( 0 ... ( # ` E ) ) ) |
| 26 | nn0fz0 | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
|
| 27 | 22 26 | sylib | |- ( ph -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 28 | 20 | oveq2d | |- ( ph -> ( 0 ... ( # ` E ) ) = ( 0 ... ( # ` F ) ) ) |
| 29 | 27 28 | eleqtrrd | |- ( ph -> ( # ` F ) e. ( 0 ... ( # ` E ) ) ) |
| 30 | fnimapr | |- ( ( ( N o. P ) Fn ( 0 ... ( # ` E ) ) /\ 0 e. ( 0 ... ( # ` E ) ) /\ ( # ` F ) e. ( 0 ... ( # ` E ) ) ) -> ( ( N o. P ) " { 0 , ( # ` F ) } ) = { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } ) |
|
| 31 | 19 25 29 30 | syl3anc | |- ( ph -> ( ( N o. P ) " { 0 , ( # ` F ) } ) = { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } ) |
| 32 | 31 | eleq2d | |- ( ph -> ( x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) <-> x e. { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } ) ) |
| 33 | vex | |- x e. _V |
|
| 34 | 33 | elpr | |- ( x e. { ( ( N o. P ) ` 0 ) , ( ( N o. P ) ` ( # ` F ) ) } <-> ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 35 | 32 34 | bitrdi | |- ( ph -> ( x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) <-> ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) ) |
| 36 | 1 2 3 4 5 6 7 | upgrimpthslem2 | |- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) /\ -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 37 | 36 | simpld | |- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) ) |
| 38 | eqeq2 | |- ( x = ( ( N o. P ) ` 0 ) -> ( ( ( N o. P ) ` y ) = x <-> ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) ) ) |
|
| 39 | 38 | notbid | |- ( x = ( ( N o. P ) ` 0 ) -> ( -. ( ( N o. P ) ` y ) = x <-> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` 0 ) ) ) |
| 40 | 37 39 | syl5ibrcom | |- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( x = ( ( N o. P ) ` 0 ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 41 | 36 | simprd | |- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) |
| 42 | eqeq2 | |- ( x = ( ( N o. P ) ` ( # ` F ) ) -> ( ( ( N o. P ) ` y ) = x <-> ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
|
| 43 | 42 | notbid | |- ( x = ( ( N o. P ) ` ( # ` F ) ) -> ( -. ( ( N o. P ) ` y ) = x <-> -. ( ( N o. P ) ` y ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 44 | 41 43 | syl5ibrcom | |- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( x = ( ( N o. P ) ` ( # ` F ) ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 45 | 40 44 | jaod | |- ( ( ph /\ y e. ( 1 ..^ ( # ` F ) ) ) -> ( ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 46 | 45 | impancom | |- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( y e. ( 1 ..^ ( # ` F ) ) -> -. ( ( N o. P ) ` y ) = x ) ) |
| 47 | 46 | imp | |- ( ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) /\ y e. ( 1 ..^ ( # ` F ) ) ) -> -. ( ( N o. P ) ` y ) = x ) |
| 48 | 47 | nrexdv | |- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> -. E. y e. ( 1 ..^ ( # ` F ) ) ( ( N o. P ) ` y ) = x ) |
| 49 | 20 | eqcomd | |- ( ph -> ( # ` F ) = ( # ` E ) ) |
| 50 | 49 | oveq2d | |- ( ph -> ( 0 ... ( # ` F ) ) = ( 0 ... ( # ` E ) ) ) |
| 51 | 50 | feq2d | |- ( ph -> ( ( N o. P ) : ( 0 ... ( # ` F ) ) --> ( Vtx ` H ) <-> ( N o. P ) : ( 0 ... ( # ` E ) ) --> ( Vtx ` H ) ) ) |
| 52 | 18 51 | mpbird | |- ( ph -> ( N o. P ) : ( 0 ... ( # ` F ) ) --> ( Vtx ` H ) ) |
| 53 | 52 | ffnd | |- ( ph -> ( N o. P ) Fn ( 0 ... ( # ` F ) ) ) |
| 54 | 53 | adantr | |- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( N o. P ) Fn ( 0 ... ( # ` F ) ) ) |
| 55 | fzo0ss1 | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
|
| 56 | fzossfz | |- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 57 | 55 56 | sstri | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 58 | 57 | a1i | |- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 59 | 54 58 | fvelimabd | |- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> ( x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) <-> E. y e. ( 1 ..^ ( # ` F ) ) ( ( N o. P ) ` y ) = x ) ) |
| 60 | 48 59 | mtbird | |- ( ( ph /\ ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) ) -> -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
| 61 | 60 | ex | |- ( ph -> ( ( x = ( ( N o. P ) ` 0 ) \/ x = ( ( N o. P ) ` ( # ` F ) ) ) -> -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 62 | 35 61 | sylbid | |- ( ph -> ( x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) -> -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 63 | 62 | ralrimiv | |- ( ph -> A. x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
| 64 | disj | |- ( ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> A. x e. ( ( N o. P ) " { 0 , ( # ` F ) } ) -. x e. ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
|
| 65 | 63 64 | sylibr | |- ( ph -> ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
| 66 | 20 | oveq2d | |- ( ph -> ( 1 ..^ ( # ` E ) ) = ( 1 ..^ ( # ` F ) ) ) |
| 67 | 66 | reseq2d | |- ( ph -> ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) = ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |
| 68 | 67 | cnveqd | |- ( ph -> `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) = `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |
| 69 | 68 | funeqd | |- ( ph -> ( Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) <-> Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) ) |
| 70 | preq2 | |- ( ( # ` E ) = ( # ` F ) -> { 0 , ( # ` E ) } = { 0 , ( # ` F ) } ) |
|
| 71 | 70 | imaeq2d | |- ( ( # ` E ) = ( # ` F ) -> ( ( N o. P ) " { 0 , ( # ` E ) } ) = ( ( N o. P ) " { 0 , ( # ` F ) } ) ) |
| 72 | oveq2 | |- ( ( # ` E ) = ( # ` F ) -> ( 1 ..^ ( # ` E ) ) = ( 1 ..^ ( # ` F ) ) ) |
|
| 73 | 72 | imaeq2d | |- ( ( # ` E ) = ( # ` F ) -> ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) = ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) |
| 74 | 71 73 | ineq12d | |- ( ( # ` E ) = ( # ` F ) -> ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 75 | 74 | eqeq1d | |- ( ( # ` E ) = ( # ` F ) -> ( ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) <-> ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
| 76 | 20 75 | syl | |- ( ph -> ( ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) <-> ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
| 77 | 69 76 | 3anbi23d | |- ( ph -> ( ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) ) <-> ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` F ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
| 78 | 10 11 65 77 | mpbir3and | |- ( ph -> ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) ) ) |
| 79 | ispth | |- ( E ( Paths ` H ) ( N o. P ) <-> ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` E ) ) ) /\ ( ( ( N o. P ) " { 0 , ( # ` E ) } ) i^i ( ( N o. P ) " ( 1 ..^ ( # ` E ) ) ) ) = (/) ) ) |
|
| 80 | 78 79 | sylibr | |- ( ph -> E ( Paths ` H ) ( N o. P ) ) |