This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvdsr2 | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∥ 𝑌 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | 1 2 3 | dvdsr | ⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |
| 5 | 4 | baib | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∥ 𝑌 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |