This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | ||
| Assertion | unitabl | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 3 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 4 | 1 2 | unitgrp | ⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |
| 5 | 3 4 | syl | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Grp ) |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 7 | 6 | crngmgp | ⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 8 | 5 | grpmndd | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
| 9 | 2 | subcmn | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ 𝐺 ∈ Mnd ) → 𝐺 ∈ CMnd ) |
| 10 | 7 8 9 | syl2anc | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
| 11 | isabl | ⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) | |
| 12 | 5 10 11 | sylanbrc | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Abel ) |