This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitmulcl.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | unitmulcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitmulcl.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑅 ∈ Ring ) | |
| 4 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 1 | unitcl | ⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ ( Base ‘ 𝑅 ) ) |
| 8 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) | |
| 9 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 10 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 13 | 1 9 10 11 12 | isunit | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 14 | 8 13 | sylib | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 15 | 14 | simpld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 16 | 5 10 2 | dvdsrmul1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
| 17 | 3 7 15 16 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
| 18 | 5 2 9 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
| 19 | 3 7 18 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
| 20 | 17 19 | breqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) 𝑌 ) |
| 21 | 1 9 10 11 12 | isunit | ⊢ ( 𝑌 ∈ 𝑈 ↔ ( 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 22 | 4 21 | sylib | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 23 | 22 | simpld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 24 | 5 10 | dvdsrtr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) 𝑌 ∧ 𝑌 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 25 | 3 20 23 24 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 26 | 11 | opprring | ⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 27 | 3 26 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 28 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 29 | 5 2 11 28 | opprmul | ⊢ ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑋 · 𝑌 ) |
| 30 | 5 1 | unitcl | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 31 | 8 30 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 32 | 22 | simprd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 33 | 11 5 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 34 | 33 12 28 | dvdsrmul1 | ⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑌 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
| 35 | 27 31 32 34 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ) |
| 36 | 5 2 11 28 | opprmul | ⊢ ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) |
| 37 | 5 2 9 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 38 | 3 31 37 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 39 | 36 38 | eqtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) = 𝑋 ) |
| 40 | 35 39 | breqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) |
| 41 | 29 40 | eqbrtrrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ) |
| 42 | 14 | simprd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 43 | 33 12 | dvdsrtr | ⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 𝑋 ∧ 𝑋 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 44 | 27 41 42 43 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 45 | 1 9 10 11 12 | isunit | ⊢ ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ↔ ( ( 𝑋 · 𝑌 ) ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ ( 𝑋 · 𝑌 ) ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 46 | 25 44 45 | sylanbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |