This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uncfcurf.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| uncfcurf.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| uncfcurf.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| uncfcurf.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| Assertion | uncfcurf | ⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfcurf.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | uncfcurf.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | uncfcurf.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | uncfcurf.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 5 | eqid | ⊢ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) | |
| 6 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐷 ∈ Cat ) |
| 7 | funcrcl | ⊢ ( 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ×c 𝐷 ) ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 9 | 8 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐸 ∈ Cat ) |
| 11 | eqid | ⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) | |
| 12 | 1 11 2 3 4 | curfcl | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) | |
| 18 | 5 6 10 13 14 15 16 17 | uncf1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) ) |
| 19 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐶 ∈ Cat ) |
| 20 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 21 | eqid | ⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) | |
| 22 | 1 14 19 6 20 15 16 21 17 | curf11 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 24 | 23 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 25 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 26 | 25 14 15 | xpcbas | ⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 27 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 28 | relfunc | ⊢ Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) | |
| 29 | 5 3 9 12 | uncfcl | ⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 30 | 1st2ndbr | ⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ) | |
| 31 | 28 29 30 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ) |
| 32 | 26 27 31 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ⟶ ( Base ‘ 𝐸 ) ) |
| 33 | 32 | ffnd | ⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 34 | 1st2ndbr | ⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) | |
| 35 | 28 4 34 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 36 | 26 27 35 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ⟶ ( Base ‘ 𝐸 ) ) |
| 37 | 36 | ffnd | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 38 | eqfnov2 | ⊢ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∧ ( 1st ‘ 𝐹 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 1st ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) | |
| 39 | 33 37 38 | syl2anc | ⊢ ( 𝜑 → ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 1st ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
| 40 | 24 39 | mpbird | ⊢ ( 𝜑 → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 1st ‘ 𝐹 ) ) |
| 41 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐷 ∈ Cat ) |
| 42 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐸 ∈ Cat ) |
| 43 | 12 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) |
| 44 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 46 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 48 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 49 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 50 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 51 | 50 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 52 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) ) | |
| 53 | 52 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐷 ) ) |
| 54 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 55 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) | |
| 56 | 5 41 42 43 14 15 45 47 48 49 51 53 54 55 | uncf2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) ) ) |
| 57 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐶 ∈ Cat ) |
| 58 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 59 | 1 14 57 41 58 15 45 21 47 | curf11 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 60 | df-ov | ⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 61 | 59 60 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 62 | 1 14 57 41 58 15 45 21 53 | curf11 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 63 | df-ov | ⊢ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) | |
| 64 | 62 63 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) ) |
| 65 | 61 64 | opeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 = 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ) |
| 66 | eqid | ⊢ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) = ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) | |
| 67 | 1 14 57 41 58 15 51 66 53 | curf11 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) ) |
| 68 | df-ov | ⊢ ( 𝑧 ( 1st ‘ 𝐹 ) 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) | |
| 69 | 67 68 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) = ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) |
| 70 | 65 69 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
| 71 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 72 | eqid | ⊢ ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) = ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) | |
| 73 | 1 14 57 41 58 15 48 71 45 51 54 72 53 | curf2val | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) ) |
| 74 | df-ov | ⊢ ( 𝑓 ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) | |
| 75 | 73 74 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) = ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ) |
| 76 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 77 | 1 14 57 41 58 15 45 21 47 49 76 53 55 | curf12 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) 𝑔 ) ) |
| 78 | df-ov | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) 𝑔 ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) | |
| 79 | 77 78 | eqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) |
| 80 | 70 75 79 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) ) = ( ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) ) |
| 81 | eqid | ⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 82 | eqid | ⊢ ( comp ‘ ( 𝐶 ×c 𝐷 ) ) = ( comp ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 83 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 84 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 85 | 84 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 1st ‘ 𝐹 ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ 𝐹 ) ) |
| 86 | opelxpi | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) | |
| 87 | 86 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 88 | 87 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 89 | 45 53 | opelxpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑥 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 90 | opelxpi | ⊢ ( ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) | |
| 91 | 90 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 92 | 91 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑧 , 𝑤 〉 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) |
| 93 | 14 48 76 57 45 | catidcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 94 | 93 55 | opelxpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 95 | 25 14 15 48 49 45 47 45 53 81 | xpchom2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 96 | 94 95 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ∈ ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑥 , 𝑤 〉 ) ) |
| 97 | 15 49 71 41 53 | catidcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ∈ ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) |
| 98 | 54 97 | opelxpd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 99 | 25 14 15 48 49 45 53 51 53 81 | xpchom2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑤 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 100 | 98 99 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ∈ ( 〈 𝑥 , 𝑤 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ) |
| 101 | 26 81 82 83 85 88 89 92 96 100 | funcco | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( ( ( 〈 𝑥 , 𝑤 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) , ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑤 〉 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑤 〉 ) ‘ 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) ) |
| 102 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 103 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 104 | 25 14 15 48 49 45 47 45 53 102 103 82 51 53 93 55 54 97 | xpcco2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) = 〈 ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) |
| 105 | 104 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) ) |
| 106 | df-ov | ⊢ ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ 〈 ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) 〉 ) | |
| 107 | 105 106 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) ) |
| 108 | 14 48 76 57 45 102 51 54 | catrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = 𝑓 ) |
| 109 | 15 49 71 41 47 103 53 55 | catlid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) = 𝑔 ) |
| 110 | 108 109 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ( ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) ( 〈 𝑦 , 𝑤 〉 ( comp ‘ 𝐷 ) 𝑤 ) 𝑔 ) ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
| 111 | 107 110 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ‘ ( 〈 𝑓 , ( ( Id ‘ 𝐷 ) ‘ 𝑤 ) 〉 ( 〈 〈 𝑥 , 𝑦 〉 , 〈 𝑥 , 𝑤 〉 〉 ( comp ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) 〈 ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) , 𝑔 〉 ) ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
| 112 | 80 101 111 | 3eqtr2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑓 ) ‘ 𝑤 ) ( 〈 ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑦 ) , ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ‘ 𝑤 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ‘ 𝑤 ) ) ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 𝑤 ) ‘ 𝑔 ) ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
| 113 | 56 112 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
| 114 | 113 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) |
| 115 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 116 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ) |
| 117 | 26 81 115 116 87 91 | funcf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
| 118 | 25 14 15 48 49 44 46 50 52 81 | xpchom2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) = ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 119 | 118 | feq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) ) |
| 120 | 117 119 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
| 121 | 120 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 122 | 26 81 115 84 87 91 | funcf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
| 123 | 118 | feq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( 〈 𝑥 , 𝑦 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑧 , 𝑤 〉 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) ) |
| 124 | 122 123 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) : ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑥 , 𝑦 〉 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐹 ) ‘ 〈 𝑧 , 𝑤 〉 ) ) ) |
| 125 | 124 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) |
| 126 | eqfnov2 | ⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ∧ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) Fn ( ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) × ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) ) | |
| 127 | 121 125 126 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑤 ) ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) 𝑔 ) ) ) |
| 128 | 114 127 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
| 129 | 128 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
| 130 | 129 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
| 131 | oveq2 | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) ) | |
| 132 | oveq2 | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) | |
| 133 | 131 132 | eqeq12d | ⊢ ( 𝑣 = 〈 𝑧 , 𝑤 〉 → ( ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
| 134 | 133 | ralxp | ⊢ ( ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
| 135 | oveq1 | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) ) | |
| 136 | oveq1 | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) | |
| 137 | 135 136 | eqeq12d | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
| 138 | 137 | 2ralbidv | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
| 139 | 134 138 | bitrid | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) ) |
| 140 | 139 | ralxp | ⊢ ( ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑤 ∈ ( Base ‘ 𝐷 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〈 𝑧 , 𝑤 〉 ) = ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑧 , 𝑤 〉 ) ) |
| 141 | 130 140 | sylibr | ⊢ ( 𝜑 → ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ) |
| 142 | 26 31 | funcfn2 | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ) |
| 143 | 26 35 | funcfn2 | ⊢ ( 𝜑 → ( 2nd ‘ 𝐹 ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ) |
| 144 | eqfnov2 | ⊢ ( ( ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ∧ ( 2nd ‘ 𝐹 ) Fn ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) × ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ) ) → ( ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 2nd ‘ 𝐹 ) ↔ ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ) ) | |
| 145 | 142 143 144 | syl2anc | ⊢ ( 𝜑 → ( ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 2nd ‘ 𝐹 ) ↔ ∀ 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ∀ 𝑣 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐷 ) ) ( 𝑢 ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 𝑣 ) = ( 𝑢 ( 2nd ‘ 𝐹 ) 𝑣 ) ) ) |
| 146 | 141 145 | mpbird | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) = ( 2nd ‘ 𝐹 ) ) |
| 147 | 40 146 | opeq12d | ⊢ ( 𝜑 → 〈 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) , ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〉 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 148 | 1st2nd | ⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = 〈 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) , ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〉 ) | |
| 149 | 28 29 148 | sylancr | ⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = 〈 ( 1st ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) , ( 2nd ‘ ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) ) 〉 ) |
| 150 | 1st2nd | ⊢ ( ( Rel ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ∧ 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) | |
| 151 | 28 4 150 | sylancr | ⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 152 | 147 149 151 | 3eqtr4d | ⊢ ( 𝜑 → ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) = 𝐹 ) |