This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uncurry operation takes a functor F : C --> ( D --> E ) to a functor uncurryF ( F ) : C X. D --> E . (Contributed by Mario Carneiro, 13-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uncfval.g | ⊢ 𝐹 = ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) | |
| uncfval.c | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| uncfval.d | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | ||
| uncfval.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) | ||
| Assertion | uncfcl | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncfval.g | ⊢ 𝐹 = ( 〈“ 𝐶 𝐷 𝐸 ”〉 uncurryF 𝐺 ) | |
| 2 | uncfval.c | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 3 | uncfval.d | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) | |
| 4 | uncfval.f | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) ) | |
| 5 | 1 2 3 4 | uncfval | ⊢ ( 𝜑 → 𝐹 = ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ) |
| 6 | eqid | ⊢ ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) = ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) | |
| 7 | eqid | ⊢ ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) = ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) | |
| 8 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 9 | funcrcl | ⊢ ( 𝐺 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐸 ) ) → ( 𝐶 ∈ Cat ∧ ( 𝐷 FuncCat 𝐸 ) ∈ Cat ) ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( 𝐷 FuncCat 𝐸 ) ∈ Cat ) ) |
| 11 | 10 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 12 | eqid | ⊢ ( 𝐶 1stF 𝐷 ) = ( 𝐶 1stF 𝐷 ) | |
| 13 | 8 11 2 12 | 1stfcl | ⊢ ( 𝜑 → ( 𝐶 1stF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐶 ) ) |
| 14 | 13 4 | cofucl | ⊢ ( 𝜑 → ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func ( 𝐷 FuncCat 𝐸 ) ) ) |
| 15 | eqid | ⊢ ( 𝐶 2ndF 𝐷 ) = ( 𝐶 2ndF 𝐷 ) | |
| 16 | 8 11 2 15 | 2ndfcl | ⊢ ( 𝜑 → ( 𝐶 2ndF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐷 ) ) |
| 17 | 6 7 14 16 | prfcl | ⊢ ( 𝜑 → ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) ) ) |
| 18 | eqid | ⊢ ( 𝐷 evalF 𝐸 ) = ( 𝐷 evalF 𝐸 ) | |
| 19 | eqid | ⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) | |
| 20 | 18 19 2 3 | evlfcl | ⊢ ( 𝜑 → ( 𝐷 evalF 𝐸 ) ∈ ( ( ( 𝐷 FuncCat 𝐸 ) ×c 𝐷 ) Func 𝐸 ) ) |
| 21 | 17 20 | cofucl | ⊢ ( 𝜑 → ( ( 𝐷 evalF 𝐸 ) ∘func ( ( 𝐺 ∘func ( 𝐶 1stF 𝐷 ) ) 〈,〉F ( 𝐶 2ndF 𝐷 ) ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 22 | 5 21 | eqeltrd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |